Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 95-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimization problem of maximizing the time-averaged profit for the motion of a smooth polydynamical system on the circle in the presence of a smooth profit density. If the problem depends on a $k$-dimensional parameter, then the optimal averaged profit is a function of the parameter. It is known from [4] that an optimal motion can always be selected among stationary strategies and a special type of periodic motions called $level cycles$. We present a classification of all generic singularities of the optimal averaged profit if $k\le2$ and the maximum is provided by level cycles.
@article{CMFD_2011_42_a9,
     author = {A. A. Davydov and H. Mena-Matos and C. S. Moreira},
     title = {Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {95--117},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - H. Mena-Matos
AU  - C. S. Moreira
TI  - Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 95
EP  - 117
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/
LA  - ru
ID  - CMFD_2011_42_a9
ER  - 
%0 Journal Article
%A A. A. Davydov
%A H. Mena-Matos
%A C. S. Moreira
%T Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 95-117
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/
%G ru
%F CMFD_2011_42_a9
A. A. Davydov; H. Mena-Matos; C. S. Moreira. Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 95-117. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/

[1] Arnold V. I., “Optimizatsiya v srednem i fazovye perekhody v upravlyaemykh dinamicheskikh sistemakh”, Funkts. analiz i ego prilozh., 36:2 (2002), 1–11 | MR | Zbl

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, v. 1, Nauka, M., 1982 | MR

[3] Davydov A. A., “Osobennosti tipichnogo dokhoda v modeli Arnolda tsiklicheskikh protsessov”, Tr. MIAN, 250, 2005, 79–94 | MR | Zbl

[4] Davydov A. A., Mena-Matosh Kh., “Tipichnye fazovye perekhody i osobennosti vygody v modeli Arnolda”, Mat. sb., 198:1 (2007), 21–42 | MR | Zbl

[5] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | MR

[6] Davydov A. A., Mena-Matos H., “Singularity theory approach to time averaged optimization”, Singularities in geometry and topology, World Sci. Publ., Hackensack, 2007, 598–628 | MR | Zbl

[7] Mena-Matos H., “Generic profit singularities in time averaged optimization-the case of a control space with a regular boundary”, J. Dynam. Control Systems, 16:1 (2010), 101–120 | DOI | MR | Zbl

[8] Mena-Matos H., Moreira C. S., “Generic singularities of the optimal averaged profit among stationary strategies”, J. Dynam. Control Systems, 13:4 (2007), 541–562 | DOI | MR | Zbl

[9] Moreira C. R., “Singularities of the optimal averaged profit for stationary strategies”, Port. Math. (N.S.), 63:1 (2006), 1–10 | MR | Zbl

[10] Moreira C. R., Singularities of the optimal averaged profit for polydynamical systems, Ph. D. Thesis, University of Porto, 2010

[11] Nickalls R. W., “A new approach to solving the cubic: Cardan's solution revealed”, Mathematical Gazette, 77 (1993), 354–359 | DOI