Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a9, author = {A. A. Davydov and H. Mena-Matos and C. S. Moreira}, title = {Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {95--117}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/} }
TY - JOUR AU - A. A. Davydov AU - H. Mena-Matos AU - C. S. Moreira TI - Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems JO - Contemporary Mathematics. Fundamental Directions PY - 2011 SP - 95 EP - 117 VL - 42 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/ LA - ru ID - CMFD_2011_42_a9 ER -
%0 Journal Article %A A. A. Davydov %A H. Mena-Matos %A C. S. Moreira %T Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems %J Contemporary Mathematics. Fundamental Directions %D 2011 %P 95-117 %V 42 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/ %G ru %F CMFD_2011_42_a9
A. A. Davydov; H. Mena-Matos; C. S. Moreira. Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 95-117. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a9/
[1] Arnold V. I., “Optimizatsiya v srednem i fazovye perekhody v upravlyaemykh dinamicheskikh sistemakh”, Funkts. analiz i ego prilozh., 36:2 (2002), 1–11 | MR | Zbl
[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, v. 1, Nauka, M., 1982 | MR
[3] Davydov A. A., “Osobennosti tipichnogo dokhoda v modeli Arnolda tsiklicheskikh protsessov”, Tr. MIAN, 250, 2005, 79–94 | MR | Zbl
[4] Davydov A. A., Mena-Matosh Kh., “Tipichnye fazovye perekhody i osobennosti vygody v modeli Arnolda”, Mat. sb., 198:1 (2007), 21–42 | MR | Zbl
[5] Golubitskii M., Giiemin V., Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | MR
[6] Davydov A. A., Mena-Matos H., “Singularity theory approach to time averaged optimization”, Singularities in geometry and topology, World Sci. Publ., Hackensack, 2007, 598–628 | MR | Zbl
[7] Mena-Matos H., “Generic profit singularities in time averaged optimization-the case of a control space with a regular boundary”, J. Dynam. Control Systems, 16:1 (2010), 101–120 | DOI | MR | Zbl
[8] Mena-Matos H., Moreira C. S., “Generic singularities of the optimal averaged profit among stationary strategies”, J. Dynam. Control Systems, 13:4 (2007), 541–562 | DOI | MR | Zbl
[9] Moreira C. R., “Singularities of the optimal averaged profit for stationary strategies”, Port. Math. (N.S.), 63:1 (2006), 1–10 | MR | Zbl
[10] Moreira C. R., Singularities of the optimal averaged profit for polydynamical systems, Ph. D. Thesis, University of Porto, 2010
[11] Nickalls R. W., “A new approach to solving the cubic: Cardan's solution revealed”, Mathematical Gazette, 77 (1993), 354–359 | DOI