Extremal paths in the nilpotent sub-Riemannian problem on the Engel group (subcritical case of pendulum oscillations)
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a left-invariant sub-Riemannian problem on an Engel group. This problem arises as a nilpotent approximation of nonholonomic systems in the four-dimensional space with two-dimensional control (e.g., the system describing the motion of a mobile robot with a trailer). For the sub-Riemannian problem on the Engel group, abnormal extremal paths are calculated. The subsystem for conjugate variables of normal Hamiltonian system of Pontryagin's maximum principle is reduced to the pendulum equation. Normal extremal paths corresponding to subcritical pendulum oscillations were calculated.
@article{CMFD_2011_42_a3,
     author = {A. A. Ardentov},
     title = {Extremal paths in the nilpotent {sub-Riemannian} problem on the {Engel} group (subcritical case of pendulum oscillations)},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {30--35},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a3/}
}
TY  - JOUR
AU  - A. A. Ardentov
TI  - Extremal paths in the nilpotent sub-Riemannian problem on the Engel group (subcritical case of pendulum oscillations)
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 30
EP  - 35
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a3/
LA  - ru
ID  - CMFD_2011_42_a3
ER  - 
%0 Journal Article
%A A. A. Ardentov
%T Extremal paths in the nilpotent sub-Riemannian problem on the Engel group (subcritical case of pendulum oscillations)
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 30-35
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a3/
%G ru
%F CMFD_2011_42_a3
A. A. Ardentov. Extremal paths in the nilpotent sub-Riemannian problem on the Engel group (subcritical case of pendulum oscillations). Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 30-35. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a3/

[1] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[2] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR | Zbl

[3] Sachkov Yu. L., Upravlyaemost i simmetrii invariantnykh sistem na gruppakh Li i odnorodnykh prostranstvakh, Fizmatlit, M., 2007 | Zbl

[4] Uitteker Yu. T., Vatson Dzh. N., Kurs sovremennogo analiza, URSS, M., 2002

[5] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Sub-Riemannian geometry, eds. Bellaiche A., Risler J. J., Birkhäuser, Basel, 1996, 1–78 | DOI | MR | Zbl

[6] Laumond J. P., Nonholonomic motion planning for mobile robots, LAAS Report 98211, LAAS–CNRS, Toulouse, France, May, 1998