Sub-Riemannian balls on the heisenberg groups: an invariant volume
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 199-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Popp measure of a sub-Riemannian ball is calculated for a left-invariant sub-Riemannian structure on the Heisenberg group.
@article{CMFD_2011_42_a18,
     author = {E. F. Sachkova},
     title = {Sub-Riemannian balls on the heisenberg groups: an invariant volume},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {199--203},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a18/}
}
TY  - JOUR
AU  - E. F. Sachkova
TI  - Sub-Riemannian balls on the heisenberg groups: an invariant volume
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 199
EP  - 203
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a18/
LA  - ru
ID  - CMFD_2011_42_a18
ER  - 
%0 Journal Article
%A E. F. Sachkova
%T Sub-Riemannian balls on the heisenberg groups: an invariant volume
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 199-203
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a18/
%G ru
%F CMFD_2011_42_a18
E. F. Sachkova. Sub-Riemannian balls on the heisenberg groups: an invariant volume. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 199-203. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a18/

[1] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85 | MR | Zbl

[2] Sachkova E. F., “Reshenie zadachi upravleniya dlya nilpotentnoi sistemy”, Differents. ur-niya, 44:12 (2008), 1704–1707 | MR

[3] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Progr. Math., 144 (1996), 1–78 | MR | Zbl

[4] Montgomery R., A tour of subriemannian geometries, their geodesies and applications, American Mathematical Society, Providence, 2002 | MR