Sub-Riemannian balls on the heisenberg groups: an invariant volume
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 199-203
Cet article a éte moissonné depuis la source Math-Net.Ru
The Popp measure of a sub-Riemannian ball is calculated for a left-invariant sub-Riemannian structure on the Heisenberg group.
@article{CMFD_2011_42_a18,
author = {E. F. Sachkova},
title = {Sub-Riemannian balls on the heisenberg groups: an invariant volume},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {199--203},
year = {2011},
volume = {42},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a18/}
}
E. F. Sachkova. Sub-Riemannian balls on the heisenberg groups: an invariant volume. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 199-203. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a18/
[1] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy – 7, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, VINITI, M., 1987, 5–85 | MR | Zbl
[2] Sachkova E. F., “Reshenie zadachi upravleniya dlya nilpotentnoi sistemy”, Differents. ur-niya, 44:12 (2008), 1704–1707 | MR
[3] Bellaiche A., “The tangent space in sub-Riemannian geometry”, Progr. Math., 144 (1996), 1–78 | MR | Zbl
[4] Montgomery R., A tour of subriemannian geometries, their geodesies and applications, American Mathematical Society, Providence, 2002 | MR