Optimal control problems with integral functional and phase constraints: reduction to optimal consistency parameter problems
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 186-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

An iteration method to solve a class of optimal control problems with integral functional and phase constraints is developed in the paper.
@article{CMFD_2011_42_a17,
     author = {E. A. Rovenskaya},
     title = {Optimal control problems with integral functional and phase constraints: reduction to optimal consistency parameter problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {186--198},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a17/}
}
TY  - JOUR
AU  - E. A. Rovenskaya
TI  - Optimal control problems with integral functional and phase constraints: reduction to optimal consistency parameter problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 186
EP  - 198
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a17/
LA  - ru
ID  - CMFD_2011_42_a17
ER  - 
%0 Journal Article
%A E. A. Rovenskaya
%T Optimal control problems with integral functional and phase constraints: reduction to optimal consistency parameter problems
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 186-198
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a17/
%G ru
%F CMFD_2011_42_a17
E. A. Rovenskaya. Optimal control problems with integral functional and phase constraints: reduction to optimal consistency parameter problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 186-198. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a17/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[4] Kryazhimskii A. V., Paschenko S. V., “K resheniyu lineinoi zadachi bystrodeistviya so smeshannymi ogranicheniyami”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya, 90, 2002, 232–260 | MR | Zbl

[5] Rovenskaya E. A., “K resheniyu zadachi ob optimalnom parametre sovmestnosti dlya odnogo klassa uravnenii v banakhovom prostranstve”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 44:12 (2004), 2150–2166 | MR | Zbl

[6] Rovenskaya E. A., “K resheniyu zadachi bystrodeistviya so smeshannymi ogranicheniyami dlya prosteishei modeli prygayuschego robota”, Nelineinaya dinamika i upravlenie, 2005, no. 5, 186–212

[7] Rovenskaya E. A., “O chislennom metode resheniya zadachi bystrodeistviya s fazovymi ogranicheniyami dlya prosteishei modeli prygayuschego odnonogogo robota”, Problemy dinamicheskogo upravleniya, 2005, no. 1, 253–267 | MR | Zbl

[8] Rovenskaya E. A., K resheniyu zadachi ob optimalnom parametre sovmestnosti dlya nekotorogo klassa upravlenii v normirovannom prostranstve, Diss. $\dots$ kand. fiz.-mat. nauk, Moskva, 2006

[9] Rovenskaya E. A., “K resheniyu zadachi optimalnogo upravleniya s fazovymi ogranicheniyami metodom dvoinykh variatsii”, Vestn. MGU, Ser. Vychislitelnaya matematika i kibernetika, 2009, no. 3, 20–29 | MR | Zbl

[10] Kryazhimskii A. V., Paschenko S. V., “On the problem of optimal compatibility”, J. Inv. Ill-Posed Problems, 9:3 (2001), 283–300 | MR | Zbl

[11] Rovenskaya E. A., Sensitivity and cost-benefit analyses of emission-constrained technological growth under uncertainty in natural emission, Interim Report IR-05-051, IIASA, 2005