Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a15, author = {B. M. Miller}, title = {Controllable systems with impacts}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {166--178}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a15/} }
B. M. Miller. Controllable systems with impacts. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 166-178. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a15/
[1] Babitskii V. I., Teoriya vibro-udarnykh sistem: Priblizhennye metody, Nauka, M., 1978 | MR
[2] Ivanov A. P., Dinamika sistem s mekhanicheskimi soudareniyami, Mezhdunarodnaya programma obrazovaniya, M., 1997 | MR
[3] Kozlov V. V., Treschev D. V., Billiardy, Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | Zbl
[4] Miller B. M., Rubinovich E. Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005
[5] Popp K., “O negladkikh sistemakh v mekhanike”, PMM, 64:5 (2000), 795–804 | Zbl
[6] Pfaifer F., Glokker K., “Kontakty v sistemakh tverdykh tel”, PMM, 64:5 (2000), 805–816
[7] Samsonov V. A., “Dinamika tormoznogo bashmaka i ‘udar, vyzvannyi treniem’ ”, PMM, 69:6 (2005), 912–921 | MR | Zbl
[8] Formalskii A. M., Modelirovanie antropomorfnykh mekhanizmov, Nauka, M., 1982
[9] Chernousko F. L., “Optimalnoe pryamolineinoe dvizhenie dvukhmassovoi sistemy”, PMM, 66:1 (2002), 2–9 | MR
[10] Astashev V., Babitsky V., Ultrasonic processes and machines dynamics, control and applications, Springer-Verlag, Berlin–Heidelberg, 2007
[11] Ballard P., Basseville S., “Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem”, Math. Model. Numer. Anal., 39:1 (2005), 59–77 | DOI | MR | Zbl
[12] Bentsman J., Miller B. M., “Control of dynamic systems with unilateral constraints and differential equations with measures”, Preprints of the 4th IFAC Nonlinear Control Systems Design Symposium 1998, NOLCOS' 98, v. 2, 1998, 411–416 | MR
[13] Bentsman J., Miller B. M., “Dynamical systems with controllable singularities: multi-scale and limit representation and optimal control”, Proc. 40th IEEE Conf. Decision and Control, 2001, 3681–3686
[14] Bentsman J., Miller B. M., “Mechanical systems with unilateral constraints: controlled singularities approach”, Proc. 40th IEEE Conf. Decision and Control, 2001, 3692–3697
[15] Bentsman J., Miller B. M., “Dynamical systems with controlled singularities: physically-based representation and control-oriented modeling”, Proc. 42th IEEE Conference Decision and Control, 2003, 6351–6356
[16] Bentsman J., Miller B. M., “Dynamical systems with active singularities of elastic type: a modeling and controller synthesis framework”, IEEE Trans. Automatic Control, 52:1 (2007), 39–55 | DOI | MR
[17] Bornemann F., Homogenization in time of singularly perturbed mechanical systems, Springer, Berlin, 1998 | MR
[18] Brogliato B., Nonsmooth impact mechanics. Models, dynamics and control, Springer-Verlag, London, 1999 | MR | Zbl
[19] Brogliato B., Lozano R., Maschke B., Egeland O., Dissipative systems analysis and control theory and applications, Springer-Verlag, London, 2000, 2007 | MR | Zbl
[20] Grizzle J. W., Abba G., Plestan F., “Asymptotically stable walking for biped robots: analysis via systems with impulse effects”, IEEE Trans. Automat. Control, 46:1 (2000), 51–64 | DOI | MR
[21] Jean M., Moreau J. J., Dynamics of elastic or rigid bodies with frictional contact: numerical methods, Publications No 124, Laboratory of Mechanics and Acoustics, April, 1991
[22] Leine R. I., van de Wouw N., Stability and convergence of mechanical systems with unilateral constraints, Springer-Verlag, Berlin–Heidelberg, 2008 | MR
[23] McClamroch N. H., “A singular perturbation approach to modeling and control of manipulators constrained by a stiff environment”, Proc. IEEE Conference on Decision and Control (Tampa, Florida, USA, 1989), v. 3, 1989, 2407–2411 | DOI | MR
[24] Miller B. M., Bentsman J., “The singularity opening approach to control of mechanical systems with constraints”, Proceedings of 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, LHMNLC' 03 (April 3–5, 2003, Seville, SPAIN), 2003, 293–298 | MR
[25] Miller B. M., Bentsman J., “Optimal control problems in hybrid systems with active singularities”, Nonlinear Anal., 65 (2006), 999–1017 | DOI | MR | Zbl
[26] Miller B. M., Bentsman J., “Generalized solutions in systems with active unilateral constraints”, Nonlinear Analysis: Hybrid Systems, 1 (2007), 510–526 | DOI | MR | Zbl
[27] Miller B. M., Rubinovich E., Impulsive control in continuous and discrete-continuous systems, Kluwer Academic, Plenum Publishers, 2003 | MR | Zbl
[28] Monteiro-Marques M. D. P., Differential inclusions in nonsmooth mechanical problems: shocks and dry friction, Birkhauser, Boston, MA, 1993 | MR | Zbl
[29] Panagiotopolos P., Glocker Ch., “Inequality constraints with elastic impacts in deformable bodies. The convex case”, Archive of Applied Mechanics, 70 (2000), 349–365 | DOI
[30] Paoli L., “Continuous dependence on data for vibro-impact problems”, Mathematical Models and Methods in Applied Sciences, 15:1 (2005), 53–93 | DOI | MR | Zbl
[31] Paoli L., “An existence result for non-smooth vibro-impact problems”, J. Differential Equations, 211 (2005), 247–281 | DOI | MR | Zbl
[32] Paoli L., Schatzman M., “Mouvement à un nombre fini de degrés de libérte avec contraintes unilatérales: cas avec perte d'énergie”, Modél. Math. Analysis Num., 27 (1993), 673–717 | MR | Zbl
[33] Paoli L., Schatzman M., “A numerical scheme for impact problems I: The one-dimencional case”, SIAM J. Numer. Anal., 40:2 (2002), 702–733 | DOI | MR | Zbl
[34] Paoli L., Schatzman M., “A numerical scheme for impact problems II: The multidimencional case”, SIAM J. Numer. Anal., 40:2 (2002), 734–768 | DOI | MR | Zbl
[35] Paoli L., Schatzman M., “Penalty approximation for dymanical systems submitted to multiple non-smooth constraints”, Multibody System Dynamics, 8 (2002), 347–366 | DOI | MR | Zbl
[36] Paoli L., Schatzman M., “Numerical simulation of the dynamics of an impacting bar”, Comput. Methods Appl. Mech. Engineering, 196 (2007), 2839–2851 | DOI | MR | Zbl
[37] Pfeifer F., Glocker C., Multi-body dynamics with unilateral constraints, Wiley, New York, 1996
[38] Ragulskis K., Bansevicious K. R., Barauskas R., Kulvetis G., Vibrimotors for precision microrobots, Hemisphere Publishers Corp., New York, 1988
[39] Schatzman M., “A class of nonlinear differential equations of second order in time”, Nonlinear Anal. TMA, 2 (1978), 355–373 | DOI | MR | Zbl
[40] Schatzman M., “Penalty method for impact in generalized coordinates”, Phil. Trans. R. Soc. London A, 359:1789 (2001), 2429–2446 | DOI | MR | Zbl
[41] Spong M., “Impact controllability of an air hockey puck”, Systems and Control Letters, 42 (2001), 333–345 | DOI | MR | Zbl
[42] Stewart D. E., “Convolution complementarity problems with application to impact problems”, IMA Journal of Applied Mathematics, 71 (2006), 92–119 | DOI | MR | Zbl
[43] Uchino K., Piezoelectric actuators and ultrasonic motors, Kluwer Academic Publishers, Boston, 1997
[44] Zhao X., Dankowicz H., “Control of impact microactuators for precise positioning”, Transactions of ASME, Journal of Computational and Nonlinear Dynamics, 1 (2006), 65–70 | DOI
[45] Zhao X., Dankowicz H., “Unfolding degenerate grazing dynamics in impact actuators”, Nonlinearity, 19 (2006), 399–418 | DOI | MR | Zbl
[46] Zhao X., Dankowicz H., Reddy C., Nayfeh A., “Modeling and simulation methodology for impact microactuators”, J. Micromech. Microeng., 14 (2004), 775–784 | DOI