Solution extensions: optimal parameter method in optimal control problems
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 152-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the extension of solution by the optimal parameter method, we obtain a numerical solution for a certain class of optimal control problems.
@article{CMFD_2011_42_a13,
     author = {E. B. Kuznetsov and A. V. Trokhin},
     title = {Solution extensions: optimal parameter method in optimal control problems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {152--157},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a13/}
}
TY  - JOUR
AU  - E. B. Kuznetsov
AU  - A. V. Trokhin
TI  - Solution extensions: optimal parameter method in optimal control problems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 152
EP  - 157
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a13/
LA  - ru
ID  - CMFD_2011_42_a13
ER  - 
%0 Journal Article
%A E. B. Kuznetsov
%A A. V. Trokhin
%T Solution extensions: optimal parameter method in optimal control problems
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 152-157
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a13/
%G ru
%F CMFD_2011_42_a13
E. B. Kuznetsov; A. V. Trokhin. Solution extensions: optimal parameter method in optimal control problems. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 152-157. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a13/

[1] Avvakumov C. N., Kiselev Yu. N., Orlov M. V., “Metody resheniya zadach optimalnogo upravleniya na osnove printsipa maksimuma Pontryagina”, Trudy MIAN, 211, 1995, 3–31 | MR | Zbl

[2] Zhulin S. S., “Metod prodolzheniya po parametru dlya poiska ekstremali v zadache optimalnogo upravleniya”, Obyknov. differ. urav., 43:11 (2005), 1460–1469 | MR

[3] Krasnikov S. D., Kuznetsov E. B., “Parametrizatsiya chislennogo resheniya kraevykh zadach dlya nelineinykh differentsialnykh uravnenii”, Zhurn. vychisl. matem. i matem. fiziki, 45:12 (2005), 2148–2158 | MR | Zbl

[4] Kuznetsov E. B., “Nailuchshaya parametrizatsiya pri postroenii krivykh”, Zhurn. vychisl. matem. i matem. fiz., 44:9 (2004), 1540–1551 | MR | Zbl

[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969 | Zbl

[6] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya, Editorial URSS, M., 1999 | MR

[7] Avvakumov S. N., Kiselev Yu. N., “Boundary value problem for ordinary differential equations with applications to optimal control”, Spectral and Evalution Problems, 10 (2000), 147–155 | MR