Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_42_a1, author = {F. Alharbi and V. M. Zakalyukin}, title = {Quasi-projections of surfaces with boundaries}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {15--22}, publisher = {mathdoc}, volume = {42}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a1/} }
F. Alharbi; V. M. Zakalyukin. Quasi-projections of surfaces with boundaries. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 15-22. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a1/
[1] Goryunov V. V., “Osobennosti proektirovanii polnykh peresechenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 22, 1983, 167–206 | MR | Zbl
[2] Zakalyukin V. M., “Kvaziproektsii”, Tr. MIAN, 259, 2007, 282–290 | MR | Zbl
[3] Arnold V. I., Singularities of caustics and wave fronts, Kluwer Academic Publishers Group, Dordrecht, 1990 | MR
[4] Arnold V. I., Goryunov V. V., Lyashko O. V., Vassiliev V. A., Singularity theory, v. II, Dynamical systems, VIII, Classification and applications, Springer-Verlag, Berlin, 1993
[5] Bruce J. W., Giblin P. J., “Projections of surfaces with boundaries”, Proc. London Math. Soc. (3), 60:2 (1990), 392–416 | DOI | MR | Zbl
[6] Damon J., “A-equivalence and the equivalence of sections of images and discriminants”, Lecture Notes in Math., 1462, 1991, 93–121 | DOI | MR | Zbl
[7] Golubitsky M., Shaeffer D., “A theory for imperfect bifurcation via singularity theory”, Comm. Pure Appl. Math., 32:1 (1979), 21–98 | DOI | MR | Zbl
[8] Goryunov V. V., “Projections of generic surfaces with boundaries”, Adv. Soviet Math., 1, 1990, 157–200 | MR | Zbl
[9] Zakalyukin V. M., “Quasi-singularities, Geometry and topology of caustics”, Banach center publications, 82, 2008, 215–225 | DOI | MR | Zbl