Quasi-projections of surfaces with boundaries
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 15-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify simple singularities of projections to a plane of surfaces embedded into three-space and equipped with a boundary up to a special equivalence relation that is more rough than the standard one. Relations to other classifications are described as well.
@article{CMFD_2011_42_a1,
     author = {F. Alharbi and V. M. Zakalyukin},
     title = {Quasi-projections of surfaces with boundaries},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {15--22},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a1/}
}
TY  - JOUR
AU  - F. Alharbi
AU  - V. M. Zakalyukin
TI  - Quasi-projections of surfaces with boundaries
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 15
EP  - 22
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a1/
LA  - ru
ID  - CMFD_2011_42_a1
ER  - 
%0 Journal Article
%A F. Alharbi
%A V. M. Zakalyukin
%T Quasi-projections of surfaces with boundaries
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 15-22
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a1/
%G ru
%F CMFD_2011_42_a1
F. Alharbi; V. M. Zakalyukin. Quasi-projections of surfaces with boundaries. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 15-22. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a1/

[1] Goryunov V. V., “Osobennosti proektirovanii polnykh peresechenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 22, 1983, 167–206 | MR | Zbl

[2] Zakalyukin V. M., “Kvaziproektsii”, Tr. MIAN, 259, 2007, 282–290 | MR | Zbl

[3] Arnold V. I., Singularities of caustics and wave fronts, Kluwer Academic Publishers Group, Dordrecht, 1990 | MR

[4] Arnold V. I., Goryunov V. V., Lyashko O. V., Vassiliev V. A., Singularity theory, v. II, Dynamical systems, VIII, Classification and applications, Springer-Verlag, Berlin, 1993

[5] Bruce J. W., Giblin P. J., “Projections of surfaces with boundaries”, Proc. London Math. Soc. (3), 60:2 (1990), 392–416 | DOI | MR | Zbl

[6] Damon J., “A-equivalence and the equivalence of sections of images and discriminants”, Lecture Notes in Math., 1462, 1991, 93–121 | DOI | MR | Zbl

[7] Golubitsky M., Shaeffer D., “A theory for imperfect bifurcation via singularity theory”, Comm. Pure Appl. Math., 32:1 (1979), 21–98 | DOI | MR | Zbl

[8] Goryunov V. V., “Projections of generic surfaces with boundaries”, Adv. Soviet Math., 1, 1990, 157–200 | MR | Zbl

[9] Zakalyukin V. M., “Quasi-singularities, Geometry and topology of caustics”, Banach center publications, 82, 2008, 215–225 | DOI | MR | Zbl