Program absorption operators in the theory of nonzero-sum differential games
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 5-14
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted the Nash equilibrium payoffs for differential games. The Nash equilibrium is one of the key concepts in the theory of noncooperative nonzero–sum two-person games. The Nash equilibrium is broadly applicable in economics as well as in biology and in, particularly, in ecology.
@article{CMFD_2011_42_a0,
     author = {Yu. V. Averboukh},
     title = {Program absorption operators in the theory of nonzero-sum differential games},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--14},
     year = {2011},
     volume = {42},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Program absorption operators in the theory of nonzero-sum differential games
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 5
EP  - 14
VL  - 42
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/
LA  - ru
ID  - CMFD_2011_42_a0
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Program absorption operators in the theory of nonzero-sum differential games
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 5-14
%V 42
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/
%G ru
%F CMFD_2011_42_a0
Yu. V. Averboukh. Program absorption operators in the theory of nonzero-sum differential games. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 5-14. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/

[1] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Uralskoe otdelenie, Ekaterinburg, 1993 | MR

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[4] Subbotin A. I., Obobschennye resheniya differentsilnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003

[5] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[6] Chentsov A. G., “O strukture odnoi igrovoi zadachi sblizheniya”, Doklady AN SSSR, 224:6 (1975), 1272–1275 | MR | Zbl

[7] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99(141):3 (1976), 394–420 | MR | Zbl

[8] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, Academic Press, London–New York, 1995 | MR | Zbl