Program absorption operators in the theory of nonzero-sum differential games
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted the Nash equilibrium payoffs for differential games. The Nash equilibrium is one of the key concepts in the theory of noncooperative nonzero–sum two-person games. The Nash equilibrium is broadly applicable in economics as well as in biology and in, particularly, in ecology.
@article{CMFD_2011_42_a0,
     author = {Yu. V. Averboukh},
     title = {Program absorption operators in the theory of nonzero-sum differential games},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {42},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/}
}
TY  - JOUR
AU  - Yu. V. Averboukh
TI  - Program absorption operators in the theory of nonzero-sum differential games
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 5
EP  - 14
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/
LA  - ru
ID  - CMFD_2011_42_a0
ER  - 
%0 Journal Article
%A Yu. V. Averboukh
%T Program absorption operators in the theory of nonzero-sum differential games
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 5-14
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/
%G ru
%F CMFD_2011_42_a0
Yu. V. Averboukh. Program absorption operators in the theory of nonzero-sum differential games. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Mathematical Control Theory and Mechanics (Suzdal, July 3–7, 2009), Tome 42 (2011), pp. 5-14. http://geodesic.mathdoc.fr/item/CMFD_2011_42_a0/

[1] Kleimenov A. F., Neantagonisticheskie pozitsionnye differentsialnye igry, Nauka, Uralskoe otdelenie, Ekaterinburg, 1993 | MR

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[4] Subbotin A. I., Obobschennye resheniya differentsilnykh uravnenii 1-go poryadka. Perspektivy dinamicheskoi optimizatsii, RKhD, Izhevsk, 2003

[5] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981 | MR | Zbl

[6] Chentsov A. G., “O strukture odnoi igrovoi zadachi sblizheniya”, Doklady AN SSSR, 224:6 (1975), 1272–1275 | MR | Zbl

[7] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99(141):3 (1976), 394–420 | MR | Zbl

[8] Basar T., Olsder G. J., Dynamic Noncooperative Game Theory, Academic Press, London–New York, 1995 | MR | Zbl