On the absence of global solutions of the Korteweg--de~Vries equation
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 141-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the problem of existence of global solutions of the Korteweg–de Vries equation. For certain initial–boundary problems for the Korteweg–de Vries equation, we obtain necessary conditions of existence (in other words, sufficient conditions of nonexistence) of global solutions.
@article{CMFD_2011_39_a7,
     author = {S. I. Pohozaev},
     title = {On the absence of global solutions of the {Korteweg--de~Vries} equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {141--150},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a7/}
}
TY  - JOUR
AU  - S. I. Pohozaev
TI  - On the absence of global solutions of the Korteweg--de~Vries equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 141
EP  - 150
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a7/
LA  - ru
ID  - CMFD_2011_39_a7
ER  - 
%0 Journal Article
%A S. I. Pohozaev
%T On the absence of global solutions of the Korteweg--de~Vries equation
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 141-150
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a7/
%G ru
%F CMFD_2011_39_a7
S. I. Pohozaev. On the absence of global solutions of the Korteweg--de~Vries equation. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 141-150. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a7/

[1] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, 2001, 3–383 | MR | Zbl

[2] Pokhozhaev S. I., “O nekotorykh vesovykh tozhdestvakh dlya reshenii obobschennykh uravnenii Kortevega–de Friza”, Mat. zametki, 89:3 (2011), 393–409

[3] Colin Th., Chidaglia J.-M., “An initial boundary value problem for the Korteweg–de Vries equation posed on a finite interval”, Adv. Differential Equations, 6:12 (2001), 1463–1492 | MR | Zbl

[4] Collander J., Keel M., Staffilani G., Takaoka H., Tao T., “Sharp global well-posedness for KdV and modified KdV on $\mathbb R$ and $T$”, Journal of the AMS, 16:3 (2003), 705–749 | MR

[5] Faminskii A. V., “An initial boundary value problem in a half-strip for the Korteweg–de Vries equation in fractional order Sobolev spaces”, Comm. Partial Differential Equations, 29:11–12 (2004), 1653–1695 | MR | Zbl

[6] Fokas A. S., Lenelles J., “Explicit soliton asymptotics for the Korteweg–de Vries equation on the half-line”, Nonlinearity, 23 (2010), 937–976 | DOI | MR | Zbl

[7] Holmer J., “The initial boundary value problem for the Korteweg–de Vries equation”, Comm. Part. Differential Equations, 31:8 (2008), 1151–1190 | DOI | MR

[8] Leach T. A., “The large-time development of the solution to an initial boundary value problem for the Korteweg–de Vries equation. I. Steady state solution”, J. Differential Equations, 246:9 (2009), 3681–3703 | DOI | MR | Zbl