Smoothness of generalized solutions of elliptic differential-difference equations with degenerations
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 130-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2011_39_a6,
     author = {V. A. Popov and A. L. Skubachevskii},
     title = {Smoothness of generalized solutions of elliptic differential-difference equations with degenerations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {130--140},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a6/}
}
TY  - JOUR
AU  - V. A. Popov
AU  - A. L. Skubachevskii
TI  - Smoothness of generalized solutions of elliptic differential-difference equations with degenerations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 130
EP  - 140
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a6/
LA  - ru
ID  - CMFD_2011_39_a6
ER  - 
%0 Journal Article
%A V. A. Popov
%A A. L. Skubachevskii
%T Smoothness of generalized solutions of elliptic differential-difference equations with degenerations
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 130-140
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a6/
%G ru
%F CMFD_2011_39_a6
V. A. Popov; A. L. Skubachevskii. Smoothness of generalized solutions of elliptic differential-difference equations with degenerations. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 130-140. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a6/

[1] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl

[2] Danford N., Shvarts Dzh., Lineinye operatory, v. 2, Mir, M., 1966

[3] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[4] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, DAN SSSR, 77 (1951), 181–183

[5] Krein S. G., Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | MR

[6] Lions Zh., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[7] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl

[8] Oleinik O. A., Radkevich E. V., Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi, VINITI, M., 1971

[9] Popov V. A., Skubachevskii A. L., “Apriornye otsenki dlya ellipticheskikh differentsialno-raznostnykh operatorov s vyrozhdeniem”, Sovrem. mat. Fundam. napravl., 36, 2010, 125–142

[10] Skubachevskii A. L., “Ellipticheskie differentsialno-raznostnye uravneniya s vyrozhdeniem”, Tr. Mosk. mat. ob-va, 59, 1997, 240–285

[11] Fikera G., “K edinoi teorii kraevykh zadach dlya elliptiko-parabolicheskikh uravnenii vtorogo poryadka”, Matematika, 7:6 (1963), 99–121

[12] Skubachevskii A., “The first boundary-value problem for strongly elliptic differential-difference equations”, J. Differential Equations, 63:3 (1986), 332–361 | DOI | MR

[13] Skubachevskii A., Elliptic functional differential equations and applications, Birkhäuser, Basel, 1997 | MR | Zbl