On intermediate attractors
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 79-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, for a four-moment model of a phonon gas system and the Dirac–Schwindler extension of the Maxwell system, that a Chapman correct restriction of a initial-boundary problem exists. The well-posedness condition is found in terms of algebraic relations for parameters of the problem and elements of the boundary matrix.
@article{CMFD_2011_39_a4,
     author = {I. V. Zagrebaev and E. V. Radkevich},
     title = {On intermediate attractors},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {79--101},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a4/}
}
TY  - JOUR
AU  - I. V. Zagrebaev
AU  - E. V. Radkevich
TI  - On intermediate attractors
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 79
EP  - 101
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a4/
LA  - ru
ID  - CMFD_2011_39_a4
ER  - 
%0 Journal Article
%A I. V. Zagrebaev
%A E. V. Radkevich
%T On intermediate attractors
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 79-101
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a4/
%G ru
%F CMFD_2011_39_a4
I. V. Zagrebaev; E. V. Radkevich. On intermediate attractors. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 79-101. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a4/

[1] Arsenev A. A., Lektsii o kineticheskikh uravneniyakh, Nauka, M., 1992 | MR

[2] Volevich L. R., Gindikin S. G., Smeshannaya zadacha dlya differentsialnykh uravnenii v chastnykh proizvodnykh s kvaziodnorodnoi starshei chastyu, Editorial URSS, M., 1999

[3] Godunov S. K., Obyknovennye differentsialnye uravneniya s postoyannymi koeffitsientami, Novosibirsk. gos. un-t, Novosibirsk, 1994 | MR | Zbl

[4] Palin V. V., “O razreshimosti kvadratnykh matrichnykh uravnenii”, Vestnik MGU. Mat., mekh., 2008, no. 6, 36–42 | MR

[5] Radkevich E. V., “Kineticheskie uravneniya i problemy proektsii Chepmena–Enskoga”, Tr. mat. inst. im. Steklova, 250, 2005, 219–225 | MR | Zbl

[6] Radkevich E. V., Matematicheskie voprosy neravnovesnykh protsessov, Tamara Rozhkovskaya, Novosibirsk, 2007

[7] Chapman S., Cowling T., Mathematical theory on non-uniform gases, Cambridge University Press, Cambridge, 1970 | MR

[8] Chen G. Q., Levermore C. D., Lui T.-P., “Hyperbolic conservation laws with stiff relaxation terms and entropy”, Commun. Pure Appl. Math., 47:6 (1994), 787–830 | DOI | MR | Zbl

[9] Chen G. Q., Lu Y. G., “A study on application of the theory of compensated compactness”, Chinese Sci. Bull., 34 (1989), 15–19 | MR | Zbl

[10] Dirac P. A. M., “Quantised singularities in the electromagnetic field”, Proc. Royal Soc. Ser. A, 133 (1931), 60–72 | DOI | Zbl

[11] Dreyer W., Struchtrup H., “Heat pulse experiments revisted”, Contin. Mech. Thermodyn., 5 (1993), 3–50 | DOI | MR

[12] Edelman I., Shapiro S. A., “An analitical approach to the description of fluid injection induced microseismicity in porous rock”, Dokl. Earth Siences, 399:8 (2004), 1108–1112

[13] Gorban A. N., Karlin I. V., Invariant manifolds for physical and chemical kinetic, Springer-Verlag, Berlin, 2005 | MR

[14] Kreiss H.-O., Initial boundary value problems for hyperbolic systems, Uppsala University, Uppsala, 1969

[15] Maxwell J. C., A treatise on electricity and magnetism, Dover Publ., N.Y., 1954 | MR | Zbl

[16] Müller I., Ruggeri T., Extended thermodynamics, Springer-Verlag, N.Y., 1993 | MR

[17] Palin V. V., Radkevich E. V., “Mathematical aspects of the Maxwell problem”, Appl. Anal., 88:8 (2009), 1233–1264 | DOI | MR | Zbl

[18] Palin V. V., Radkevich E. V., “On the Maxwell problem”, J. Math. Sci. (N.Y.), 157:6 (2009), 816–857 | DOI | MR | Zbl

[19] Peierls R., “Zur kinetischen throrie der warmeleitung in kristallen”, Annalen d. Physik, 5:3 (1929), 1055–1101 | DOI | MR | Zbl

[20] Radkevich E. V., “Irreducible Chapman–Enskog projections and Navier–Stokes approximations”, Instability in models connected with fluid flows, Springer, N.Y., 2007, 85–151 | MR

[21] Schwinger J., “A magnetic model of matter”, Science, 165 (1969), 757–761 | DOI

[22] Struchtrup H., Weiss W., “Temperature jump and velocity slip in the moment method”, Contin. Mech. Thermodyn., 12 (2000), 1–18 | DOI | MR | Zbl