Estimates of the Nash--Aronson type for degenerating parabolic equations
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 66-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider second-order parabolic equations describing diffusion with degeneration and diffusion on singular and combined structures. We give a united definition of a solution of the Cauchy problem for such equations by means of semigroup theory in the space $L^2$ with a suitable measure. We establish some weight estimates for solutions of Cauchy problems. Estimates of Nash–Aronson type for the fundamental solution follow from them. We plan to apply these estimates to known asymptotic diffusion problems, namely, to the stabilization of solutions and to the “central limit theorem”.
@article{CMFD_2011_39_a3,
     author = {V. V. Zhikov},
     title = {Estimates of the {Nash--Aronson} type for degenerating parabolic equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {66--78},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a3/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Estimates of the Nash--Aronson type for degenerating parabolic equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 66
EP  - 78
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a3/
LA  - ru
ID  - CMFD_2011_39_a3
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Estimates of the Nash--Aronson type for degenerating parabolic equations
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 66-78
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a3/
%G ru
%F CMFD_2011_39_a3
V. V. Zhikov. Estimates of the Nash--Aronson type for degenerating parabolic equations. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 66-78. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a3/

[1] Guschin A. K., “Ravnomernaya stabilizatsiya reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya”, Mat. sb., 119(161):4(12) (1982), 451–508 | MR | Zbl

[2] Zhikov V. V., “Asimptoticheskie zadachi, svyazannye s uravneniem teploprovodnosti v perforirovannykh oblastyakh”, Mat. sb., 181:10 (1990), 1283–1305 | MR | Zbl

[3] Zhikov V. V., “O vesovykh sobolevskikh prostranstvakh”, Mat. sb., 189:8 (1998), 27–58 | MR | Zbl

[4] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[5] Zhikov V. V., “Ob otsenkakh tipa Nesha–Aronsona dlya uravneniya diffuzii s nesimmetricheskoi matritsei i ikh prilozhenii k usredneniyu”, Mat. sb., 197:12 (2006), 65–94 | MR | Zbl

[6] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[7] Zhikov V. V., Pyatnitskii A. L., “Usrednenie sluchainykh singulyarnykh struktur i sluchainykh mer”, Izv. RAN. Ser. matem., 70:1 (2006), 23–74 | MR | Zbl

[8] Porper F. O., Eidelman S. D., “Dvustoronnie otsenki dlya fundamentalnykh reshenii parabolicheskikh uravnenii vtorogo poryadka i nekotorye ikh prilozheniya”, Usp. mat. nauk, 39:3 (1984), 107–156 | MR | Zbl

[9] Aronson D. G., “Bounds for the fundamental solutions of a parabolic equation”, Bull. Am. Math. Soc., 1967, 890–896 | DOI | MR | Zbl

[10] Aronson D. G., “Non-negative solutions of linear parabolic equations”, Ann. Scuola Norm. Sup. Pisa (3), 4:8 (1968), 607–694 | MR | Zbl

[11] Davies E. B., Heat kernels and spectral theory, University Press, Cambridge, 1989 | MR | Zbl

[12] Fabes E. B., Kenig C. E., Serapioni R. P., “The local regularity of solutions of generate elliptic equations”, Comm. Partial Differential Equations, 7 (1982), 77–116 | DOI | MR | Zbl

[13] Grigor'yan A., “Gaussian upper bounds for the heat kernel on arbitrary manifolds”, J. Differential Geometry, 45 (1997), 33–52 | MR

[14] Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994 | MR

[15] Muckenhoupt B., “Weighted norm inequalities for Hardy maximal functions”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl