Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 185-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

Acoustic equations for combined media consisting of partially perforated viscoelastic material and viscous incompressible liquid filling pores are considered. An averaged model is constructed for the model under consideration, and boundary conditions connecting equations of the obtained averaged model on the boundary between solid viscoelastic material and porous viscoelastic material filled by a viscous incompressible liquid are found. The convergence of limit problems to the solution of corresponding averaged problem with respect to the norm of the space $L^2$ is proved.
@article{CMFD_2011_39_a11,
     author = {V. V. Shumilova},
     title = {Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {185--198},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/}
}
TY  - JOUR
AU  - V. V. Shumilova
TI  - Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 185
EP  - 198
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/
LA  - ru
ID  - CMFD_2011_39_a11
ER  - 
%0 Journal Article
%A V. V. Shumilova
%T Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 185-198
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/
%G ru
%F CMFD_2011_39_a11
V. V. Shumilova. Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 185-198. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/

[1] Bakhvalov H. C., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[3] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl

[4] Zhikov V. V., “O dvukhmasshtabnoi skhodimosti”, Tr. sem. im. I. G. Petrovskogo, 23, 149–187 | MR | Zbl

[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[6] Kosmodemyanskii D. A., Shamaev A. S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, Izv. RAN. MTT, 2009, no. 6, 75–114

[7] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zh., 48:3 (2007), 645–667 | MR | Zbl

[8] Oleinik O. A, Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi silno neodnorodnykh uprugikh sred, MGU, M., 1990

[9] Pyatnitskii A. L., Chechkin G. A., Shamaev A. S., Usrednenie. Metody i nekotorye prilozheniya, Tamara Rozhkovskaya, Novosibirsk, 2005

[10] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[11] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl

[12] Allaire G., Damlamian A., Hornung U., “Two-scale convergence on periodic surfaces and applications”, Mathematical Modelling of Flow through Porous Media, Singapore, 1995, 15–25 | MR

[13] Clark G. W., Showalter R. E., “Two-scale convergence of a model for flow in a partially fissured medium”, Electron. J. Differ. Equations, 2 (1999), 1–20 | MR

[14] Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed, I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl

[15] Lukassen D., Nguetseng G., Wall P., “Two-scale convergence”, Int. J. Pure Appl. Math., 20:1 (2002), 35–86 | MR

[16] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[17] Neuss-Radu M., “Some extension of two-scale convergence”, C. R. Acad. Sciences Paris Ser. I Math., 322 (1996), 899–904 | MR | Zbl

[18] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl

[19] Nguetseng G., “Asimptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21:6 (1990), 1396–1414 | DOI | MR