Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_39_a11, author = {V. V. Shumilova}, title = {Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {185--198}, publisher = {mathdoc}, volume = {39}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/} }
TY - JOUR AU - V. V. Shumilova TI - Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid JO - Contemporary Mathematics. Fundamental Directions PY - 2011 SP - 185 EP - 198 VL - 39 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/ LA - ru ID - CMFD_2011_39_a11 ER -
%0 Journal Article %A V. V. Shumilova %T Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid %J Contemporary Mathematics. Fundamental Directions %D 2011 %P 185-198 %V 39 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/ %G ru %F CMFD_2011_39_a11
V. V. Shumilova. Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a~liquid. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 185-198. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a11/
[1] Bakhvalov H. C., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl
[3] Zhikov V. V., “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izv. RAN. Ser. matem., 66:2 (2002), 81–148 | MR | Zbl
[4] Zhikov V. V., “O dvukhmasshtabnoi skhodimosti”, Tr. sem. im. I. G. Petrovskogo, 23, 149–187 | MR | Zbl
[5] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[6] Kosmodemyanskii D. A., Shamaev A. S., “Spektralnye svoistva nekotorykh zadach mekhaniki silno neodnorodnykh sred”, Izv. RAN. MTT, 2009, no. 6, 75–114
[7] Meirmanov A. M., “Metod dvukhmasshtabnoi skhodimosti Nguetsenga v zadachakh filtratsii i seismoakustiki v uprugikh poristykh sredakh”, Sib. mat. zh., 48:3 (2007), 645–667 | MR | Zbl
[8] Oleinik O. A, Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi silno neodnorodnykh uprugikh sred, MGU, M., 1990
[9] Pyatnitskii A. L., Chechkin G. A., Shamaev A. S., Usrednenie. Metody i nekotorye prilozheniya, Tamara Rozhkovskaya, Novosibirsk, 2005
[10] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[11] Allaire G., “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23 (1992), 1482–1518 | DOI | MR | Zbl
[12] Allaire G., Damlamian A., Hornung U., “Two-scale convergence on periodic surfaces and applications”, Mathematical Modelling of Flow through Porous Media, Singapore, 1995, 15–25 | MR
[13] Clark G. W., Showalter R. E., “Two-scale convergence of a model for flow in a partially fissured medium”, Electron. J. Differ. Equations, 2 (1999), 1–20 | MR
[14] Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed, I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl
[15] Lukassen D., Nguetseng G., Wall P., “Two-scale convergence”, Int. J. Pure Appl. Math., 20:1 (2002), 35–86 | MR
[16] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl
[17] Neuss-Radu M., “Some extension of two-scale convergence”, C. R. Acad. Sciences Paris Ser. I Math., 322 (1996), 899–904 | MR | Zbl
[18] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20:3 (1989), 608–623 | DOI | MR | Zbl
[19] Nguetseng G., “Asimptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21:6 (1990), 1396–1414 | DOI | MR