Averaging of boundary-value problems for the Laplace operator in perforated domains with a~nonlinear boundary condition of the third type on the boundary of cavities
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 173-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the asymptotic behavior of solutions $u_\varepsilon$ of the Poisson equation in the $\varepsilon$-periodically perforated domain $\Omega_\varepsilon\subset\mathbb R^n$, $n\ge3$, with the third nonlinear boundary condition of the form $\partial_\nu u_\varepsilon+\varepsilon^{-\gamma}\sigma(x,u_\varepsilon)=\varepsilon^{-\gamma}g(x)$ on a boundary of cavities, is studied. It is supposed that the diameter of cavities has the order $\varepsilon^\alpha$ with $\alpha>1$ and any $\gamma$. Here, all types of asymptotic behavior of solutions $u_\varepsilon$, corresponding to different relations between parameters $\alpha$ and $\gamma$, are studied.
@article{CMFD_2011_39_a10,
     author = {M. N. Zubova and T. A. Shaposhnikova},
     title = {Averaging of boundary-value problems for the {Laplace} operator in perforated domains with a~nonlinear boundary condition of the third type on the boundary of cavities},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {173--184},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a10/}
}
TY  - JOUR
AU  - M. N. Zubova
AU  - T. A. Shaposhnikova
TI  - Averaging of boundary-value problems for the Laplace operator in perforated domains with a~nonlinear boundary condition of the third type on the boundary of cavities
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 173
EP  - 184
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a10/
LA  - ru
ID  - CMFD_2011_39_a10
ER  - 
%0 Journal Article
%A M. N. Zubova
%A T. A. Shaposhnikova
%T Averaging of boundary-value problems for the Laplace operator in perforated domains with a~nonlinear boundary condition of the third type on the boundary of cavities
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 173-184
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a10/
%G ru
%F CMFD_2011_39_a10
M. N. Zubova; T. A. Shaposhnikova. Averaging of boundary-value problems for the Laplace operator in perforated domains with a~nonlinear boundary condition of the third type on the boundary of cavities. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 173-184. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a10/

[1] Belyaev A. G., Pyatnitskii A. L., Chechkin G. A., “Usrednenie v perforirovannoi oblasti s ostsilliruyuschim tretim kraevym usloviem”, Mat. sb., 192:7 (2001), 3–20 | MR | Zbl

[2] Eger V., Oleinik O. A., Shamaev A. S., “Ob asimptotike reshenii kraevoi zadachi dlya uravneniya Laplasa v chastichno perforirovannoi oblasti s kraevymi usloviyami tretego roda na granitsakh polostei”, Tr. Mosk. mat. ob-va, 58, 1997, 187–223 | MR

[3] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990

[4] Oleinik O. A., Shaposhnikova T. A., “O zadache usredneniya v chastichno perforirovannoi oblasti s granichnym usloviem smeshannogo tipa na granitse polostei, soderzhaschim malyi parametr”, Differ. uravn., 31:7 (1995), 1140–1150 | MR

[5] Berlyand L. V., Goncharenko M. V., “Averaging of a diffusion equation in a porous medium with weak absorption”, J. Soviet Math., 52:5 (1990), 3428–3435 | DOI | MR

[6] Goncharenko M., “The asymptotic behaviour of the third boundary-value problem solutions in domains whith fine-grained boundaries”, Homogenization and Applications to Material Sciences, GAKUTO International Series Mathematocal Sciences and Applications, 9, 1997, 203–213 | MR

[7] Mel'nik T. A., Sivak O. A., “Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain”, J. Math. Sci. (N.Y.), 164:3 (2010), 427–453 | DOI

[8] Oleinik O. A., Shaposhnikova T. A., “On homogenization problems for the Laplace operator in partially perforated domains with Neumann's condition on the boundary of cavities”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 6:3 (1995), 133–142 | MR | Zbl

[9] Oleinik O. A., Shaposhnikova T. A., “On the homogenization of the Poisson equation in partially perforated domains with arbitrary density of cavities and mixed type conditions on their boundary”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 7:3 (1996), 129–146 | MR | Zbl

[10] Piatnitski A. L., Chiado Piat V., “$\Gamma$-convergence approach to variational problems in perforated domains with Fourier boundary conditions”, ESAIM: Control Optim. Calc. Var., 16:1 (2010), 148–175 | DOI | MR | Zbl