Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2011_39_a1, author = {M. S. Agranovich}, title = {Spectral problems in {Lipschitz} domains}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {11--35}, publisher = {mathdoc}, volume = {39}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/} }
M. S. Agranovich. Spectral problems in Lipschitz domains. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 11-35. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/
[1] Agranovich M. C., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhn. Sovr. problemy matem. Fund. napr., 63, VINITI, M., 1990, 5–129 | MR | Zbl
[2] Agranovich M. C., “Spektralnye svoistva operatorov tipa potentsiala dlya nekotorogo klassa silno ellipticheskikh sistem na gladkikh i lipshitsevykh poverkhnostyakh”, Tr. Mosk. mat. ob-va., 62, 2001, 3–53 | Zbl
[3] Agranovich M. C., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Usp. mat. nauk, 57:5 (2002), 3–78 | MR | Zbl
[4] Agranovich M. C., Operatory s diskretnym spektrom, Lektsii v Nezavisimom moskovskom universitete, 2004–2005 http://www.agranovich.nm.ru
[5] Agranovich M. C., “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego prilozh., 40:4 (2006), 83–103 | MR | Zbl
[6] Agranovich M. C., “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego prilozh., 41:4 (2007), 1–21 | MR | Zbl
[7] Agranovich M. C., “Spektralnye zadachi v lipschitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H^\sigma_p$ i $B^\sigma_p$”, Funkts. analiz i ego prilozh., 42:4 (2008), 2–23 | MR | Zbl
[8] Agranovich M. C., “Operatory tipa potentsiala i zadachi sopryazheniya dlya silno ellipticheskikh sistem 2-go poryadka v oblastyakh s lipshitsevoi granitsei”, Funkts. analiz i ego prilozh., 43:3 (2009), 3–25 | MR
[9] Agranovich M. C., “Silno ellipticheskie sistemy 2-go poryadka s granichnymi usloviyami na nezamknutoi lipshitsevoi poverkhnosti”, Funkts. analiz i ego prilozh., 45:1 (2011), 1–15
[10] Agranovich M. C., “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego prilozh., 45:2 (2011) (to appear)
[11] Agranovich M.C, Amosov B. A., “Otsenki $s$-chisel i spektralnye asimptotiki operatorov tipa potentsiala na negladkikh poverkhnostyakh”, Funkts. analiz i ego prilozh., 30:2 (1996), 1–18 | MR | Zbl
[12] Agranovich M. C., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Usp. mat. nauk, 19:3 (1964), 53–161 | MR | Zbl
[13] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR
[14] Birman M. Sh., Solomyak M. Z., “Spektralnye asimptotiki dlya negladkikh ellipticheskikh operatorov, I”, Tr. Mosk. mat. ob-va, 27, 1972, 3–52 | MR | Zbl
[15] Birman M. Sh., Solomyak M. Z., “Spektralnye asimptotiki dlya negladkikh ellipticheskikh operatorov, II”, Tr. Mosk. mat. ob-va, 28, 1973, 3–34 | Zbl
[16] Birman M. Sh., Solomyak M. Z., “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, X Matematicheskaya shkola, Matematicheskii institut, Kiev, 1974, 5–189 | MR
[17] Vishik M. I., “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Mat. cb., 29(71):3 (1951), 615–676 | MR | Zbl
[18] Voititskii V. I., Kopachevskii N. D.,Starkov P. A., “Mnogokomponentnye zadachi sopryazheniya i vspomogatelnye abstraktnye kraevye zadachi”, Sovrem. mat. Fundam. napravl., 34, 2009, 5–44 | MR
[19] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v zadachakh difraktsii, S dobavleniem Agranovicha M. C.: Spektralnye svoistva zadach difraktsii, Nauka, M., 1977 | MR
[20] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[21] Danford N., Shvarts Dzh. T., Lineinye operatory, v. II, Mir, M., 1966
[22] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[23] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR
[24] Krein C. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR
[25] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[26] Lidskii V. B., “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. Mosk. mat. ob-va, 11, 1962, 3–35 | MR
[27] Markus A. C., “Nekotorye priznaki polnoty sistemy kornevykh vektorov lineinykh operatorov v banakhovom prostranstve”, Mat. cb., 70(112):4 (1966), 526–561 | MR | Zbl
[28] Markus A. C., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl
[29] Natroshvili D. G., Issledovanie kraevykh i nachalno-kraevykh zadach matematicheskoi teorii uprugosti i termouprugosti dlya odnorodnykh anizotropnykh sred metodom potentsiala, Diss. d. f.-m. n., Tbilisi, 1984
[30] Paltsev B. B., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Mat. cb., 187:4 (1996), 59–116 | MR | Zbl
[31] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., “Spektralnaya teoriya differentsialnykh operatorov”, Itogi nauki i tekhn. Sovr. problemy matem. Fund. napr., 64, VINITI, M., 1989, 5–242 | MR | Zbl
[32] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl
[33] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[34] Shneiberg I. Ya., “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issl., 9:2 (1974), 214–227 | MR
[35] Agmon Sh., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl
[36] Agmon Sh., Lectures on elliptic boundary value problems, Van Nostrand, Princeton, 1965 | MR | Zbl
[37] Agranovich M. S., “Elliptic boundary problems”, Encyclopaedia Math. Sci., 79, Springer, Berlin etc., 1997, 1–144 | MR | Zbl
[38] Agranovich M. S., “On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain”, Russ. J. Math. Phys., 13:3 (2006), 281–286 | DOI | MR
[39] Agranovich M. S., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl
[40] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized method of egenoscillations in difraction theory, Pererabotannaya angliiskaya versiya knigi [19], Viley–VCH, Berlin, 1999 | MR
[41] Burgoyne J., “Denseness of the generalized eigenvectors of a discrete operator in a Banach space”, J. Operator Theory, 33 (1995), 279–297 | MR | Zbl
[42] Calderón A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74:4 (1977), 1324–1327 | DOI | MR | Zbl
[43] Calderón A. P., “Boundary value problem for the Laplace equation in Lipschitzean domains”, Recent Progress in Fourier Analysis, North Holland Math. Stud., 111, 1985, 33–48 | MR | Zbl
[44] Coifman R. R., McIntosh A., Meyer Y., “L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les curbes lipschitziennes”, Ann. of Math. (2), 116:2 (1982), 361–387 | DOI | MR | Zbl
[45] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19 (1988), 613–626 | DOI | MR | Zbl
[46] Dahlberg B., Kenig C. E., Verchota G. C., “Boundary value problems for the system of elastostatics in Lipschitz domains”, Duke Math. J., 57 (1988), 795–818 | DOI | MR | Zbl
[47] Edmunds D. E., Triebel H., Function spaces, entropy numbers and differential operators, Cambridge Univ. Press, Cambridge, 1996 | MR
[48] Gårding L., “Dirichlet problem for linear elliptic partial differential equations”, Math. Scand., 1 (1953), 55–72 | MR
[49] Grisward P., Elliptic problems in nonsmooth domains, Pitman, Boston, 1985
[50] Grothendieck A., Produits tenzoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 1955, no. 16, 1955 | MR
[51] Grothendieck A., “La theórie de Fredholm”, Bull. Soc. Math. France, 84 (1956), 319–384 | MR | Zbl
[52] Hsiao G. C., Wendland W. L., Boundary integral equations, Springer, Berlin etc., 2008 | MR
[53] Jerison D., Kenig C. E., “Boundary value problems on Lipschitz domains”, MAA Stud. Math., 23 (1982), 1–68 | MR | Zbl
[54] Jerison D., Kenig C. E., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 164–219 | DOI | MR
[55] Jonsson A., Wallin H., Function spaces on subsets of $\mathbb R^n$, Math. Rep., 2, no. 1, 1984 | MR | Zbl
[56] Kato T., “Fractional powers of dissipative operators”, J. Math. Soc. Japan, 13 (1961), 246–274 | DOI | MR | Zbl
[57] Kenig C. E., Harmonic analysis techniques for second order elliptic boundary value problems, Amer. Math. Soc., Providence, RI, 1994 | MR
[58] König H., Eigenvalue distribution of compact operators, Birkhäuser, Basel, 1986 | MR
[59] Lax P., Milgram A., “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Ann. of Math. Stud., 33, 1954, 167–190 | MR | Zbl
[60] Lions J.-L., “Espaces d'interpolation et domaines de puissances fractionaires d'opérateurs”, J. Math. Soc. Japan, 14 (1962), 233–248 | DOI | MR
[61] Maz'ya V., Mitrea M., Shaposhnikova T., The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, 2007, arXiv: math/0701898 | MR
[62] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[63] Métivier G., “Valeurs propres de problémes aux limites elliptiques irreguliers”, Bull. Soc. Math. France Suppl. M'em., 51–52 (1977), 125–219 | MR | Zbl
[64] Mikhailov S. E., Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients, 2009, arXiv: 0906.3875
[65] Mitrea D., Mitrea M., Taylor M., Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Mem. Amer. Math. Soc., 150, no. 713, 2001 | MR
[66] Mitrea M., Taylor M., “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163 (1999), 181–251 | DOI | MR | Zbl
[67] Mitrea M., M. Taylor M., “Potential Theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov results and the Poisson problem”, J. Funct. Anal., 176 (2000), 1–79 | DOI | MR | Zbl
[68] Nec̆has J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967
[69] Netrusov Yu., Safarov Yu., “Weyl asymptotic formula for the Laplacian on domains with rough boundaries”, Comm. Math. Phys., 253 (2005), 481–509 | DOI | MR | Zbl
[70] Nirenberg L., “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl
[71] Oleinik O. A., Shamaev A. S., Yosifian G. A., Mathematical problems in elasticity and homogenization, North-Holland Publishing Co., Amsterdam, 1992 | MR
[72] Von Petersdorff T., “Boundary integral equations for mixed Dirichlet. Neumann and transmission problems”, Math. Methods Appl. Sci., 11 (1989), 185–213 | DOI | MR | Zbl
[73] Pietsch A., Eigenvalues and $s$-numbers, Academie Verlag, Leipzig, 1987 | MR
[74] Rozenblum G., Tashchiyan G., “Eigenvalue asymptotics for potential type operators on Lipschitz surfaces”, Russ. J. Math. Phys., 13:3 (2006), 326–339 | DOI | MR | Zbl
[75] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl
[76] Sandgren L., “A vibration problem”, Medd. Lund Univ. Math. Sem., 13 (1955), 1–84 | MR
[77] Savaré J., “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl
[78] Shen Z., “Resolvent estimates in $L^p$ for elliptic systems in Lipschitz domains”, J. Funct. Anal., 133:1 (1995), 224–251 | DOI | MR | Zbl
[79] Suslina T. A., “Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary”, Russ. J. Math. Phys., 6:2 (1999), 214–234 | MR | Zbl
[80] Triebel H., “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15:2 (2002), 475–524 | MR | Zbl
[81] Verchota G., “Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains”, J. Funct. Anal., 59 (1984), 572–611 | DOI | MR | Zbl
[82] Wolff T. H., “A note on interpolation spaces”, Lecture Notes in Math., 908, Springer, Berlin etc., 1982, 199–204 | MR