Spectral problems in Lipschitz domains
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 11-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to spectral problems for strongly elliptic second-order systems in bounded Lipschitz domains. We consider the spectral Dirichlet and Neumann problems and three problems with spectral parameter in conditions at the boundary: the Poincaré–Steklov problem and two transmission problems. In the style of a survey, we discuss the main properties of these problems, both self-adjoint and non-self-adjoint. As a preliminary, we explain several facts of the general theory of the main boundary value problems in Lipschitz domains. The original definitions are variational. The use of the boundary potentials is based on results on the unique solvability of the Dirichlet and Neumann problems. In the main part of the paper, we use the simplest Hilbert $L_2$-spaces $H^s$, but we describe some generalizations to Banach spaces $H^s_p$ of Bessel potentials and Besov spaces $B^s_p$ at the end of the paper.
@article{CMFD_2011_39_a1,
     author = {M. S. Agranovich},
     title = {Spectral problems in {Lipschitz} domains},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {11--35},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Spectral problems in Lipschitz domains
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 11
EP  - 35
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/
LA  - ru
ID  - CMFD_2011_39_a1
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Spectral problems in Lipschitz domains
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 11-35
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/
%G ru
%F CMFD_2011_39_a1
M. S. Agranovich. Spectral problems in Lipschitz domains. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 11-35. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/

[1] Agranovich M. C., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Itogi nauki i tekhn. Sovr. problemy matem. Fund. napr., 63, VINITI, M., 1990, 5–129 | MR | Zbl

[2] Agranovich M. C., “Spektralnye svoistva operatorov tipa potentsiala dlya nekotorogo klassa silno ellipticheskikh sistem na gladkikh i lipshitsevykh poverkhnostyakh”, Tr. Mosk. mat. ob-va., 62, 2001, 3–53 | Zbl

[3] Agranovich M. C., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Usp. mat. nauk, 57:5 (2002), 3–78 | MR | Zbl

[4] Agranovich M. C., Operatory s diskretnym spektrom, Lektsii v Nezavisimom moskovskom universitete, 2004–2005 http://www.agranovich.nm.ru

[5] Agranovich M. C., “Regulyarnost variatsionnykh reshenii lineinykh granichnykh zadach v lipshitsevykh oblastyakh”, Funkts. analiz i ego prilozh., 40:4 (2006), 83–103 | MR | Zbl

[6] Agranovich M. C., “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego prilozh., 41:4 (2007), 1–21 | MR | Zbl

[7] Agranovich M. C., “Spektralnye zadachi v lipschitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H^\sigma_p$ i $B^\sigma_p$”, Funkts. analiz i ego prilozh., 42:4 (2008), 2–23 | MR | Zbl

[8] Agranovich M. C., “Operatory tipa potentsiala i zadachi sopryazheniya dlya silno ellipticheskikh sistem 2-go poryadka v oblastyakh s lipshitsevoi granitsei”, Funkts. analiz i ego prilozh., 43:3 (2009), 3–25 | MR

[9] Agranovich M. C., “Silno ellipticheskie sistemy 2-go poryadka s granichnymi usloviyami na nezamknutoi lipshitsevoi poverkhnosti”, Funkts. analiz i ego prilozh., 45:1 (2011), 1–15

[10] Agranovich M. C., “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego prilozh., 45:2 (2011) (to appear)

[11] Agranovich M.C, Amosov B. A., “Otsenki $s$-chisel i spektralnye asimptotiki operatorov tipa potentsiala na negladkikh poverkhnostyakh”, Funkts. analiz i ego prilozh., 30:2 (1996), 1–18 | MR | Zbl

[12] Agranovich M. C., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Usp. mat. nauk, 19:3 (1964), 53–161 | MR | Zbl

[13] Berg I., Lëfstrëm I., Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[14] Birman M. Sh., Solomyak M. Z., “Spektralnye asimptotiki dlya negladkikh ellipticheskikh operatorov, I”, Tr. Mosk. mat. ob-va, 27, 1972, 3–52 | MR | Zbl

[15] Birman M. Sh., Solomyak M. Z., “Spektralnye asimptotiki dlya negladkikh ellipticheskikh operatorov, II”, Tr. Mosk. mat. ob-va, 28, 1973, 3–34 | Zbl

[16] Birman M. Sh., Solomyak M. Z., “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, X Matematicheskaya shkola, Matematicheskii institut, Kiev, 1974, 5–189 | MR

[17] Vishik M. I., “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Mat. cb., 29(71):3 (1951), 615–676 | MR | Zbl

[18] Voititskii V. I., Kopachevskii N. D.,Starkov P. A., “Mnogokomponentnye zadachi sopryazheniya i vspomogatelnye abstraktnye kraevye zadachi”, Sovrem. mat. Fundam. napravl., 34, 2009, 5–44 | MR

[19] Voitovich N. N., Katsenelenbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v zadachakh difraktsii, S dobavleniem Agranovicha M. C.: Spektralnye svoistva zadach difraktsii, Nauka, M., 1977 | MR

[20] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[21] Danford N., Shvarts Dzh. T., Lineinye operatory, v. II, Mir, M., 1966

[22] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[23] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[24] Krein C. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[25] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[26] Lidskii V. B., “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. Mosk. mat. ob-va, 11, 1962, 3–35 | MR

[27] Markus A. C., “Nekotorye priznaki polnoty sistemy kornevykh vektorov lineinykh operatorov v banakhovom prostranstve”, Mat. cb., 70(112):4 (1966), 526–561 | MR | Zbl

[28] Markus A. C., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[29] Natroshvili D. G., Issledovanie kraevykh i nachalno-kraevykh zadach matematicheskoi teorii uprugosti i termouprugosti dlya odnorodnykh anizotropnykh sred metodom potentsiala, Diss. d. f.-m. n., Tbilisi, 1984

[30] Paltsev B. B., “O smeshannoi zadache s neodnorodnymi granichnymi usloviyami dlya ellipticheskikh s parametrom uravnenii vtorogo poryadka v lipshitsevykh oblastyakh”, Mat. cb., 187:4 (1996), 59–116 | MR | Zbl

[31] Rozenblyum G. V., Solomyak M. Z., Shubin M. A., “Spektralnaya teoriya differentsialnykh operatorov”, Itogi nauki i tekhn. Sovr. problemy matem. Fund. napr., 64, VINITI, M., 1989, 5–242 | MR | Zbl

[32] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[33] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[34] Shneiberg I. Ya., “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issl., 9:2 (1974), 214–227 | MR

[35] Agmon Sh., “On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems”, Comm. Pure Appl. Math., 15 (1962), 119–147 | DOI | MR | Zbl

[36] Agmon Sh., Lectures on elliptic boundary value problems, Van Nostrand, Princeton, 1965 | MR | Zbl

[37] Agranovich M. S., “Elliptic boundary problems”, Encyclopaedia Math. Sci., 79, Springer, Berlin etc., 1997, 1–144 | MR | Zbl

[38] Agranovich M. S., “On a mixed Poincaré–Steklov type spectral problem in a Lipschitz domain”, Russ. J. Math. Phys., 13:3 (2006), 281–286 | DOI | MR

[39] Agranovich M. S., “Remarks on potential spaces and Besov spaces in a Lipschitz domain and on Whitney arrays on its boundary”, Russ. J. Math. Phys., 15:2 (2008), 146–155 | DOI | MR | Zbl

[40] Agranovich M. S., Katsenelenbaum B. Z., Sivov A. N., Voitovich N. N., Generalized method of egenoscillations in difraction theory, Pererabotannaya angliiskaya versiya knigi [19], Viley–VCH, Berlin, 1999 | MR

[41] Burgoyne J., “Denseness of the generalized eigenvectors of a discrete operator in a Banach space”, J. Operator Theory, 33 (1995), 279–297 | MR | Zbl

[42] Calderón A. P., “Cauchy integrals on Lipschitz curves and related operators”, Proc. Nat. Acad. Sci. USA, 74:4 (1977), 1324–1327 | DOI | MR | Zbl

[43] Calderón A. P., “Boundary value problem for the Laplace equation in Lipschitzean domains”, Recent Progress in Fourier Analysis, North Holland Math. Stud., 111, 1985, 33–48 | MR | Zbl

[44] Coifman R. R., McIntosh A., Meyer Y., “L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les curbes lipschitziennes”, Ann. of Math. (2), 116:2 (1982), 361–387 | DOI | MR | Zbl

[45] Costabel M., “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19 (1988), 613–626 | DOI | MR | Zbl

[46] Dahlberg B., Kenig C. E., Verchota G. C., “Boundary value problems for the system of elastostatics in Lipschitz domains”, Duke Math. J., 57 (1988), 795–818 | DOI | MR | Zbl

[47] Edmunds D. E., Triebel H., Function spaces, entropy numbers and differential operators, Cambridge Univ. Press, Cambridge, 1996 | MR

[48] Gårding L., “Dirichlet problem for linear elliptic partial differential equations”, Math. Scand., 1 (1953), 55–72 | MR

[49] Grisward P., Elliptic problems in nonsmooth domains, Pitman, Boston, 1985

[50] Grothendieck A., Produits tenzoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 1955, no. 16, 1955 | MR

[51] Grothendieck A., “La theórie de Fredholm”, Bull. Soc. Math. France, 84 (1956), 319–384 | MR | Zbl

[52] Hsiao G. C., Wendland W. L., Boundary integral equations, Springer, Berlin etc., 2008 | MR

[53] Jerison D., Kenig C. E., “Boundary value problems on Lipschitz domains”, MAA Stud. Math., 23 (1982), 1–68 | MR | Zbl

[54] Jerison D., Kenig C. E., “The inhomogeneous Dirichlet problem in Lipschitz domains”, J. Funct. Anal., 130:1 (1995), 164–219 | DOI | MR

[55] Jonsson A., Wallin H., Function spaces on subsets of $\mathbb R^n$, Math. Rep., 2, no. 1, 1984 | MR | Zbl

[56] Kato T., “Fractional powers of dissipative operators”, J. Math. Soc. Japan, 13 (1961), 246–274 | DOI | MR | Zbl

[57] Kenig C. E., Harmonic analysis techniques for second order elliptic boundary value problems, Amer. Math. Soc., Providence, RI, 1994 | MR

[58] König H., Eigenvalue distribution of compact operators, Birkhäuser, Basel, 1986 | MR

[59] Lax P., Milgram A., “Parabolic equations”, Contributions to the Theory of Partial Differential Equations, Ann. of Math. Stud., 33, 1954, 167–190 | MR | Zbl

[60] Lions J.-L., “Espaces d'interpolation et domaines de puissances fractionaires d'opérateurs”, J. Math. Soc. Japan, 14 (1962), 233–248 | DOI | MR

[61] Maz'ya V., Mitrea M., Shaposhnikova T., The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, 2007, arXiv: math/0701898 | MR

[62] McLean W., Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[63] Métivier G., “Valeurs propres de problémes aux limites elliptiques irreguliers”, Bull. Soc. Math. France Suppl. M'em., 51–52 (1977), 125–219 | MR | Zbl

[64] Mikhailov S. E., Traces, extensions, co-normal derivatives and solution regularity of elliptic systems with smooth and non-smooth coefficients, 2009, arXiv: 0906.3875

[65] Mitrea D., Mitrea M., Taylor M., Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Mem. Amer. Math. Soc., 150, no. 713, 2001 | MR

[66] Mitrea M., Taylor M., “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163 (1999), 181–251 | DOI | MR | Zbl

[67] Mitrea M., M. Taylor M., “Potential Theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov results and the Poisson problem”, J. Funct. Anal., 176 (2000), 1–79 | DOI | MR | Zbl

[68] Nec̆has J., Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967

[69] Netrusov Yu., Safarov Yu., “Weyl asymptotic formula for the Laplacian on domains with rough boundaries”, Comm. Math. Phys., 253 (2005), 481–509 | DOI | MR | Zbl

[70] Nirenberg L., “Remarks on strongly elliptic partial differential equations”, Comm. Pure Appl. Math., 8 (1955), 649–675 | DOI | MR | Zbl

[71] Oleinik O. A., Shamaev A. S., Yosifian G. A., Mathematical problems in elasticity and homogenization, North-Holland Publishing Co., Amsterdam, 1992 | MR

[72] Von Petersdorff T., “Boundary integral equations for mixed Dirichlet. Neumann and transmission problems”, Math. Methods Appl. Sci., 11 (1989), 185–213 | DOI | MR | Zbl

[73] Pietsch A., Eigenvalues and $s$-numbers, Academie Verlag, Leipzig, 1987 | MR

[74] Rozenblum G., Tashchiyan G., “Eigenvalue asymptotics for potential type operators on Lipschitz surfaces”, Russ. J. Math. Phys., 13:3 (2006), 326–339 | DOI | MR | Zbl

[75] Rychkov V. S., “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc. (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[76] Sandgren L., “A vibration problem”, Medd. Lund Univ. Math. Sem., 13 (1955), 1–84 | MR

[77] Savaré J., “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[78] Shen Z., “Resolvent estimates in $L^p$ for elliptic systems in Lipschitz domains”, J. Funct. Anal., 133:1 (1995), 224–251 | DOI | MR | Zbl

[79] Suslina T. A., “Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary”, Russ. J. Math. Phys., 6:2 (1999), 214–234 | MR | Zbl

[80] Triebel H., “Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers”, Rev. Mat. Comput., 15:2 (2002), 475–524 | MR | Zbl

[81] Verchota G., “Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains”, J. Funct. Anal., 59 (1984), 572–611 | DOI | MR | Zbl

[82] Wolff T. H., “A note on interpolation spaces”, Lecture Notes in Math., 908, Springer, Berlin etc., 1982, 199–204 | MR