Spectral problems in Lipschitz domains
Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 11-35

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to spectral problems for strongly elliptic second-order systems in bounded Lipschitz domains. We consider the spectral Dirichlet and Neumann problems and three problems with spectral parameter in conditions at the boundary: the Poincaré–Steklov problem and two transmission problems. In the style of a survey, we discuss the main properties of these problems, both self-adjoint and non-self-adjoint. As a preliminary, we explain several facts of the general theory of the main boundary value problems in Lipschitz domains. The original definitions are variational. The use of the boundary potentials is based on results on the unique solvability of the Dirichlet and Neumann problems. In the main part of the paper, we use the simplest Hilbert $L_2$-spaces $H^s$, but we describe some generalizations to Banach spaces $H^s_p$ of Bessel potentials and Besov spaces $B^s_p$ at the end of the paper.
@article{CMFD_2011_39_a1,
     author = {M. S. Agranovich},
     title = {Spectral problems in {Lipschitz} domains},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {11--35},
     publisher = {mathdoc},
     volume = {39},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/}
}
TY  - JOUR
AU  - M. S. Agranovich
TI  - Spectral problems in Lipschitz domains
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2011
SP  - 11
EP  - 35
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/
LA  - ru
ID  - CMFD_2011_39_a1
ER  - 
%0 Journal Article
%A M. S. Agranovich
%T Spectral problems in Lipschitz domains
%J Contemporary Mathematics. Fundamental Directions
%D 2011
%P 11-35
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/
%G ru
%F CMFD_2011_39_a1
M. S. Agranovich. Spectral problems in Lipschitz domains. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 39 (2011), pp. 11-35. http://geodesic.mathdoc.fr/item/CMFD_2011_39_a1/