Fast algorithms for implementation of the Green's function
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 131-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to new fast algorithms for implementation of the Green's function for the Helmholtz operator in high-frequency regions in periodic and helical structures.
@article{CMFD_2010_37_a7,
     author = {A. D. Yunakovsky},
     title = {Fast algorithms for implementation of the {Green's} function},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {131--146},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a7/}
}
TY  - JOUR
AU  - A. D. Yunakovsky
TI  - Fast algorithms for implementation of the Green's function
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 131
EP  - 146
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a7/
LA  - ru
ID  - CMFD_2010_37_a7
ER  - 
%0 Journal Article
%A A. D. Yunakovsky
%T Fast algorithms for implementation of the Green's function
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 131-146
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a7/
%G ru
%F CMFD_2010_37_a7
A. D. Yunakovsky. Fast algorithms for implementation of the Green's function. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 131-146. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a7/

[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[2] Brychkov Yu. A., Marichev O. I., Prudnikov A. P., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[3] Galishnikova T. N., Ilinskii A. S., Chislennye metody v zadachakh difraktsii, Izd-vo MGU, M., 1987 | MR | Zbl

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962, 1108 pp.

[5] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1965 | MR | Zbl

[6] Popov B. A., Tesler G. S., Vychislenie funktsii na EVM, Spravochnik, Naukova dumka, Kiev, 1984

[7] Fuks B. A., Levin V. I., Funktsii kompleksnogo peremennogo i nekotorye ikh prilozheniya. Spetsialnye glavy, GITTL, M.–L., 1951

[8] Yunakovskii A. D., Nachala vychislitelnykh metodov dlya fizikov, IPF RAN, Nizhnii Novgorod, 2007

[9] Capolino F., Wilton D., Johnson W., “Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method”, IEEE Trans. Antennas and Propagation, 53:9 (2005), 2977–2984 | DOI | MR

[10] A. Cornell, Atomic International Library, 1964

[11] Jordan K. E., Richter G. R., Sheng P., “An efficient numerical evaluation of the Green's function for the Ytlmholtz operator on periodic structures”, Journ. of Comput. Phys., 63 (1986), 222–235 | DOI | MR | Zbl

[12] Kurkcu H., Reitich F., “Stable tnd efficient evaluation of periodized Green's functions for the Helmholtz equation at high frequencies”, Journ. of Comput. Phys., 228:1 (2009), 75–95 | DOI | MR | Zbl

[13] Papanicolaou V. G., “Ewald's method revisited: rapidly convergent series representation of certain Green's functions”, J. Comp. Anal. Appl., 1:1, Jan. (1999), 105–114 | MR

[14] Valerio G., Baccarelli P., Burghionoli P., Dalli A., “Comparative analysis of acceleration techniques for 2-D and 3-D Green's functions in periodic structures along one and two directions”, IEEE Trans. Antennas and Propagation, 55:6, June (2007), 1630–1642 | DOI | MR

[15] Weiderman J. A. C., “Computation of the complex error function”, SIAM J. Numer. Anal., 31:5, Oct. (1994), 1497–1518 | DOI | MR