Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2010_37_a7, author = {A. D. Yunakovsky}, title = {Fast algorithms for implementation of the {Green's} function}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {131--146}, publisher = {mathdoc}, volume = {37}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a7/} }
A. D. Yunakovsky. Fast algorithms for implementation of the Green's function. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 131-146. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a7/
[1] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR
[2] Brychkov Yu. A., Marichev O. I., Prudnikov A. P., Integraly i ryady, Nauka, M., 1981 | MR | Zbl
[3] Galishnikova T. N., Ilinskii A. S., Chislennye metody v zadachakh difraktsii, Izd-vo MGU, M., 1987 | MR | Zbl
[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1962, 1108 pp.
[5] Evgrafov M. A., Analiticheskie funktsii, Nauka, M., 1965 | MR | Zbl
[6] Popov B. A., Tesler G. S., Vychislenie funktsii na EVM, Spravochnik, Naukova dumka, Kiev, 1984
[7] Fuks B. A., Levin V. I., Funktsii kompleksnogo peremennogo i nekotorye ikh prilozheniya. Spetsialnye glavy, GITTL, M.–L., 1951
[8] Yunakovskii A. D., Nachala vychislitelnykh metodov dlya fizikov, IPF RAN, Nizhnii Novgorod, 2007
[9] Capolino F., Wilton D., Johnson W., “Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method”, IEEE Trans. Antennas and Propagation, 53:9 (2005), 2977–2984 | DOI | MR
[10] A. Cornell, Atomic International Library, 1964
[11] Jordan K. E., Richter G. R., Sheng P., “An efficient numerical evaluation of the Green's function for the Ytlmholtz operator on periodic structures”, Journ. of Comput. Phys., 63 (1986), 222–235 | DOI | MR | Zbl
[12] Kurkcu H., Reitich F., “Stable tnd efficient evaluation of periodized Green's functions for the Helmholtz equation at high frequencies”, Journ. of Comput. Phys., 228:1 (2009), 75–95 | DOI | MR | Zbl
[13] Papanicolaou V. G., “Ewald's method revisited: rapidly convergent series representation of certain Green's functions”, J. Comp. Anal. Appl., 1:1, Jan. (1999), 105–114 | MR
[14] Valerio G., Baccarelli P., Burghionoli P., Dalli A., “Comparative analysis of acceleration techniques for 2-D and 3-D Green's functions in periodic structures along one and two directions”, IEEE Trans. Antennas and Propagation, 55:6, June (2007), 1630–1642 | DOI | MR
[15] Weiderman J. A. C., “Computation of the complex error function”, SIAM J. Numer. Anal., 31:5, Oct. (1994), 1497–1518 | DOI | MR