Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2010_37_a6, author = {A. V. Fursikov}, title = {Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {83--130}, publisher = {mathdoc}, volume = {37}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/} }
TY - JOUR AU - A. V. Fursikov TI - Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 83 EP - 130 VL - 37 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/ LA - ru ID - CMFD_2010_37_a6 ER -
%0 Journal Article %A A. V. Fursikov %T Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 83-130 %V 37 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/ %G ru %F CMFD_2010_37_a6
A. V. Fursikov. Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 83-130. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/
[1] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl
[2] Adams R. A., Furne Dzh. Dzh. F., Prostranstva Soboleva, Tamara Rozhkovskaya, Novosibirsk, 2009 | Zbl
[3] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008
[4] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[6] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR
[7] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, v. 4, Nekotorye prilozheniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatlit, M., 1961 | MR
[8] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[9] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii iprostranstva Orlicha, Fizmatlit, M., 1958
[10] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1979
[11] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR
[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl
[13] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo. inostr. lit., M., 1960 | MR
[14] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl
[15] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[16] Fursikov A. V., “Zadachi upravleniya i teoremy, kasayuschiesya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh uravnenii Nave–Stoksa i Eilera”, Mat. sb., 115(157):2 (1981), 281–307 | MR | Zbl
[17] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999 | Zbl
[18] Fursikov A. V., Emanuilov O. Yu., “Tochnaya upravlyaemost uravnenii Nave–Stoksa i Bussineska”, UMN, 54:3 (1999), 93–146 | MR | Zbl
[19] Shvarts L., Analiz, v. 2, Mir, M., 1972
[20] Shorygin P. O., “Approksimativnaya upravlyaemost sistemy Nave–Stoksa v neogranichennykh oblastyakh”, Mat. sb., 194:11 (2003), 141–160 | MR | Zbl
[21] Fursikov A. V., Gunzburger M., Hou L., “Boundary value problems and boundary optimal control for the Navier–Stokes systems: the two dimensional case”, SIAM J. Control Optim., 36 (1998), 852–894 | DOI | MR | Zbl
[22] Fursikov A. V., Gunzburger M., Hou L., “Trace theorems for three-dimensional time-dependent solenoidal vector fields and their applications”, Trans. Amer. Math. Soc., 354 (2002), 1079–1116 | DOI | MR | Zbl
[23] Fursikov A. V., Gunzburger M., Hou L., “Boundary value problems for three-dimensional evolutionary Navier–Stokes equations”, J. Math. Fluid Mech., 4 (2002), 45–75 | DOI | MR | Zbl
[24] Fursikov A. V., Gunzburger M., Hou L., “Optimal boundary control for evolutionary Navier–Stokes system: the three-dimensional case”, SIAM J. Control Optim., 43 (2005), 2191–2232 | DOI | MR | Zbl
[25] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations, v. II, Springer, New York, 1994
[26] Galdi G. P., “On the steady self-propelled motion of a body in a viscous incompressible fluid”, Arch. Ration. Mech. Anal., 148 (1999), 53–88 | DOI | MR | Zbl