Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 83-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2010_37_a6,
     author = {A. V. Fursikov},
     title = {Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {83--130},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 83
EP  - 130
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/
LA  - ru
ID  - CMFD_2010_37_a6
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 83-130
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/
%G ru
%F CMFD_2010_37_a6
A. V. Fursikov. Flow of a~viscous incompressible fluid around a~body: boundary-value problems and minimization of the work of a~fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 83-130. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a6/

[1] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | MR | Zbl

[2] Adams R. A., Furne Dzh. Dzh. F., Prostranstva Soboleva, Tamara Rozhkovskaya, Novosibirsk, 2009 | Zbl

[3] Alekseev G. V., Tereshko D. A., Analiz i optimizatsiya v gidrodinamike vyazkoi zhidkosti, Dalnauka, Vladivostok, 2008

[4] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[6] Vishik M. I., Fursikov A. V., Matematicheskie zadachi statisticheskoi gidromekhaniki, Nauka, M., 1980 | MR

[7] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii, v. 4, Nekotorye prilozheniya garmonicheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatlit, M., 1961 | MR

[8] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[9] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii iprostranstva Orlicha, Fizmatlit, M., 1958

[10] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1979

[11] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR

[12] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[13] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, Izd-vo. inostr. lit., M., 1960 | MR

[14] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[15] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[16] Fursikov A. V., “Zadachi upravleniya i teoremy, kasayuschiesya odnoznachnoi razreshimosti smeshannoi kraevoi zadachi dlya trekhmernykh uravnenii Nave–Stoksa i Eilera”, Mat. sb., 115(157):2 (1981), 281–307 | MR | Zbl

[17] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999 | Zbl

[18] Fursikov A. V., Emanuilov O. Yu., “Tochnaya upravlyaemost uravnenii Nave–Stoksa i Bussineska”, UMN, 54:3 (1999), 93–146 | MR | Zbl

[19] Shvarts L., Analiz, v. 2, Mir, M., 1972

[20] Shorygin P. O., “Approksimativnaya upravlyaemost sistemy Nave–Stoksa v neogranichennykh oblastyakh”, Mat. sb., 194:11 (2003), 141–160 | MR | Zbl

[21] Fursikov A. V., Gunzburger M., Hou L., “Boundary value problems and boundary optimal control for the Navier–Stokes systems: the two dimensional case”, SIAM J. Control Optim., 36 (1998), 852–894 | DOI | MR | Zbl

[22] Fursikov A. V., Gunzburger M., Hou L., “Trace theorems for three-dimensional time-dependent solenoidal vector fields and their applications”, Trans. Amer. Math. Soc., 354 (2002), 1079–1116 | DOI | MR | Zbl

[23] Fursikov A. V., Gunzburger M., Hou L., “Boundary value problems for three-dimensional evolutionary Navier–Stokes equations”, J. Math. Fluid Mech., 4 (2002), 45–75 | DOI | MR | Zbl

[24] Fursikov A. V., Gunzburger M., Hou L., “Optimal boundary control for evolutionary Navier–Stokes system: the three-dimensional case”, SIAM J. Control Optim., 43 (2005), 2191–2232 | DOI | MR | Zbl

[25] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations, v. II, Springer, New York, 1994

[26] Galdi G. P., “On the steady self-propelled motion of a body in a viscous incompressible fluid”, Arch. Ration. Mech. Anal., 148 (1999), 53–88 | DOI | MR | Zbl