Asymptotic analysis of regularly and singularly perturbed problems and their applications in biology
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2010_37_a1,
     author = {Yu. A. Konyaev and V. I. Bezyaev and O. N. Filippova},
     title = {Asymptotic analysis of regularly and singularly perturbed problems and their applications in biology},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {16--27},
     publisher = {mathdoc},
     volume = {37},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a1/}
}
TY  - JOUR
AU  - Yu. A. Konyaev
AU  - V. I. Bezyaev
AU  - O. N. Filippova
TI  - Asymptotic analysis of regularly and singularly perturbed problems and their applications in biology
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 16
EP  - 27
VL  - 37
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a1/
LA  - ru
ID  - CMFD_2010_37_a1
ER  - 
%0 Journal Article
%A Yu. A. Konyaev
%A V. I. Bezyaev
%A O. N. Filippova
%T Asymptotic analysis of regularly and singularly perturbed problems and their applications in biology
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 16-27
%V 37
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a1/
%G ru
%F CMFD_2010_37_a1
Yu. A. Konyaev; V. I. Bezyaev; O. N. Filippova. Asymptotic analysis of regularly and singularly perturbed problems and their applications in biology. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 16-27. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a1/

[1] Vasileva A. B., Butuzov V. F., Asimptotichsekie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[2] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo MGU, M., 1998 | MR

[3] Kato T., Teoriya vozmuscheniya lineinykh operatorov, Mir, M., 1972 | Zbl

[4] Konyaev Yu. A., “Obschii podkhod k asimptoticheskomu integrirovaniyu singulyarno vozmuschennykh nachalnykh i kraevykh zadach dlya sistem lineinykh ODU”, Differents. uravn., 20:11 (1984), 1999–2003 | MR | Zbl

[5] Konyaev Yu. A., “Ob odnom metode issledovaniya nekotorykh zadach teorii vozmuscheniya”, Mat. sb., 184:12 (1993), 133–144 | MR | Zbl

[6] Konyaev Yu. A., “Ob odnom metode issledovaniya ustoichivosti i otsenki normy resheniya”, Mat. zametki, 81:4 (2007), 540–546 | MR | Zbl

[7] Konyaev Yu. A., Fedorov Yu. S., “Asimptoticheskii analiz nekotorykh klassov singulyarno vozmuschennykh zadach na poluosi”, Mat. zametki, 62:1 (1997), 111–117 | MR | Zbl

[8] Lankaster P., Teoriya matrits, Nauka, M., 1978 | MR

[9] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[10] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[11] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[12] Rozo M., Nelineinye kolebaniya i teoriya ustoichivosti, Nauka, M., 1971

[13] Fridrikhs K., Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969

[14] Arrowsmith D. K., Place C. M., Dynamical systems. Differential equations, maps and chaotic behavior, Chapman Hall, London, 1992 | MR | Zbl

[15] Chen X., Zhai G., “Modeling and analysis for oscillator networks”, Proceeding of the 25th Lasted International Conference on Identification and Control (Lanzorote, Canary Islands, Spain), 2006, 261–264

[16] Zeeman E. C., “Differential Equations for the Heartbeat and Nerve Impulse”, Salvador Symposium on Dynamical Systems, Academic Press, 1973, 683–741 | MR