Necessary and sufficient conditions for the existence of symmetry groups for systems of differential-difference equations with partial derivatives
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 5-15
Voir la notice du chapitre de livre
In the present paper, we obtain necessary and sufficient conditions for the existence of symmetry groups for systems of differential-difference equations with partial derivatives. Constructions of symmetry groups and recursion operators for various differential-difference equations are described. The corresponding symmetry generators that transform solutions of given equations into other solutions are obtained.
@article{CMFD_2010_37_a0,
author = {I. A. Kolesnikova},
title = {Necessary and sufficient conditions for the existence of symmetry groups for systems of differential-difference equations with partial derivatives},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {5--15},
year = {2010},
volume = {37},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2010_37_a0/}
}
TY - JOUR AU - I. A. Kolesnikova TI - Necessary and sufficient conditions for the existence of symmetry groups for systems of differential-difference equations with partial derivatives JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 5 EP - 15 VL - 37 UR - http://geodesic.mathdoc.fr/item/CMFD_2010_37_a0/ LA - ru ID - CMFD_2010_37_a0 ER -
%0 Journal Article %A I. A. Kolesnikova %T Necessary and sufficient conditions for the existence of symmetry groups for systems of differential-difference equations with partial derivatives %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 5-15 %V 37 %U http://geodesic.mathdoc.fr/item/CMFD_2010_37_a0/ %G ru %F CMFD_2010_37_a0
I. A. Kolesnikova. Necessary and sufficient conditions for the existence of symmetry groups for systems of differential-difference equations with partial derivatives. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 37 (2010), pp. 5-15. http://geodesic.mathdoc.fr/item/CMFD_2010_37_a0/
[1] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl
[2] Olver P., Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1980 | MR
[3] Savchin V. M., Matematicheskie metody mekhaniki beskonechnomernykh nepotentsialnykh sistem, UDN, M., 1991 | MR
[4] Filippov V. M., Savchin V. M., Shorokhov S. G., Variatsionnye printsipy dlya nepotentsialnykh operatorov, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 40, VINITI, M., 1992 | MR | Zbl