Boundary-value problems for fourth-order equations of hyperbolic and composite types
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 87-111
Voir la notice de l'article provenant de la source Math-Net.Ru
Boundary-value problems for fourth-order linear partial differential equations of hyperbolic and composite types are studied. The method of energy inequalities and averaging operators with variable step is used to prove existence and uniqueness theorems for strong solutions. The Riesz theorem on the representation of linear continuous functionals in Hilbert spaces is used to prove the existence and uniqueness theorems for generalized solutions.
@article{CMFD_2010_36_a7,
author = {V. I. Korzyuk and O. A. Konopel'ko and E. S. Cheb},
title = {Boundary-value problems for fourth-order equations of hyperbolic and composite types},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {87--111},
publisher = {mathdoc},
volume = {36},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/}
}
TY - JOUR AU - V. I. Korzyuk AU - O. A. Konopel'ko AU - E. S. Cheb TI - Boundary-value problems for fourth-order equations of hyperbolic and composite types JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 87 EP - 111 VL - 36 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/ LA - ru ID - CMFD_2010_36_a7 ER -
%0 Journal Article %A V. I. Korzyuk %A O. A. Konopel'ko %A E. S. Cheb %T Boundary-value problems for fourth-order equations of hyperbolic and composite types %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 87-111 %V 36 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/ %G ru %F CMFD_2010_36_a7
V. I. Korzyuk; O. A. Konopel'ko; E. S. Cheb. Boundary-value problems for fourth-order equations of hyperbolic and composite types. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 87-111. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/