Boundary-value problems for fourth-order equations of hyperbolic and composite types
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 87-111

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary-value problems for fourth-order linear partial differential equations of hyperbolic and composite types are studied. The method of energy inequalities and averaging operators with variable step is used to prove existence and uniqueness theorems for strong solutions. The Riesz theorem on the representation of linear continuous functionals in Hilbert spaces is used to prove the existence and uniqueness theorems for generalized solutions.
@article{CMFD_2010_36_a7,
     author = {V. I. Korzyuk and O. A. Konopel'ko and E. S. Cheb},
     title = {Boundary-value problems for fourth-order equations of hyperbolic and composite types},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {87--111},
     publisher = {mathdoc},
     volume = {36},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - O. A. Konopel'ko
AU  - E. S. Cheb
TI  - Boundary-value problems for fourth-order equations of hyperbolic and composite types
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 87
EP  - 111
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/
LA  - ru
ID  - CMFD_2010_36_a7
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A O. A. Konopel'ko
%A E. S. Cheb
%T Boundary-value problems for fourth-order equations of hyperbolic and composite types
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 87-111
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/
%G ru
%F CMFD_2010_36_a7
V. I. Korzyuk; O. A. Konopel'ko; E. S. Cheb. Boundary-value problems for fourth-order equations of hyperbolic and composite types. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 2, Tome 36 (2010), pp. 87-111. http://geodesic.mathdoc.fr/item/CMFD_2010_36_a7/