Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2010_35_a8, author = {H. A. Hamid and M. F. Bidaut-Veron}, title = {Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {118--125}, publisher = {mathdoc}, volume = {35}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/} }
TY - JOUR AU - H. A. Hamid AU - M. F. Bidaut-Veron TI - Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 118 EP - 125 VL - 35 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/ LA - ru ID - CMFD_2010_35_a8 ER -
%0 Journal Article %A H. A. Hamid %A M. F. Bidaut-Veron %T Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 118-125 %V 35 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/ %G ru %F CMFD_2010_35_a8
H. A. Hamid; M. F. Bidaut-Veron. Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/
[1] Abdel Hamid H., Bidaut-Véron M. F., On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, Preprint
[2] Abdellaoui B., Dall'Aglio A., Peral I., “Some remarks on elliptic problems with critical growth in the gradient”, J. Differ. Equations, 222 (2006), 21–62 | DOI | MR | Zbl
[3] Bidaut-Véron M. F., “Removable singularities and existence for a quasilinear equation”, Adv. Nonlin. Stud., 3 (2003), 25–63 | MR | Zbl
[4] Bidaut-Véron M. F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl
[5] Brezis H., Cazenave T., Martel Y., Ramiandrisoa A., “Blow-up for $u_t-\Delta u=g(u)$ revisited”, Adv. Differ. Equations, 1 (1996), 73–90 | MR | Zbl
[6] Brezis H., Vazquez J., “Blow-up solutions of some nonlinear elliptic problems”, Rev. Mat. Comp., 10 (1997), 443–469 | MR | Zbl
[7] Cabre X., Sanchon M., “Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian”, Comm. Pure Appl. Anal., 6 (2007), 43–67 | MR | Zbl
[8] Dal Maso G., Murat F., Orsina L., Prignet A., “Renormalized solutions of elliptic equations with general measure data”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 28 (1999), 741–808 | MR | Zbl
[9] Ferrero A., “On the solutions of quasilinear elliptic equations with a polynomial-type reaction term”, Adv. Differ. Equations, 9 (2004), 1201–1234 | MR | Zbl
[10] Garcia Azorero J., Peral I., “Some results about the existence of a second positive solution in a quasilinear critical problem”, Indiana Univ. Math. J., 43 (1994), 941–957 | DOI | MR | Zbl
[11] Garcia Azorero J., Peral I., Manfredi J., “Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations”, Comm. Cont. Math., 3 (2000), 385–404 | MR | Zbl
[12] Garcia Azorero J., Peral I., Puel J., “Quasilinear problems with exponential growth in the reaction term”, Nonlin. Anal., 22 (1994), 481–498 | DOI | MR | Zbl
[13] Ghoussoub N., Preiss D., “A general mountain path principle for locating and classifying critical points”, Ann. Inst. Poincaré Anal. Non Linéaire, 6:5 (1989), 321–330 | MR | Zbl
[14] Grenon N., “Existence results for semilinear elliptic equations with small measure data”, Ann. Inst. Poincaré Anal. Non Linéaire, 19:1 (2002), 1–11 | DOI | MR | Zbl
[15] Jeanjean L., “On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem”, Proc. Roy. Soc. Edinburgh Sect. A, 4 (1999), 787–809 | MR | Zbl
[16] Mignot F., Puel J. P., “Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe”, Comm. Partial Differ. Equations, 5 (1980), 791–836 | DOI | MR | Zbl
[17] Nedev G., “Regularity of the extremal solution of semilinear elliptic equations”, C. R. Math. Acad. Sci. Paris, 330 (2000), 997–2002 | MR
[18] Nedev G., Extremal solutions of semilinear elliptic equations, Preprint, 2001
[19] Sanchon M., “Boundeness of the extremal solutions of some $p$-Laplacian problems”, Nonlin. Anal., 67 (2007), 281–294 | DOI | MR | Zbl
[20] Sanchon M., “Regularity of the extremal solutions of some nonlinear elliptic problems”, Potential Anal., 27 (2007), 217–224 | DOI | MR | Zbl