Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125
Voir la notice de l'article provenant de la source Math-Net.Ru
We give existence, nonexistence and multiplicity results of nonnegative solutions for Dirichlet problems of the form $$
-\Delta_pv=\lambda f(x)(1+g(v))^{p-1}\quad\text{in}\quad\Omega,\qquad u=0\quad\text{on}\quad\partial\Omega,
$$
where $\Delta_p$ is the $p$-Laplacian $(p>1)$, $g$ is nondecreasing, superlinear, and possibly convex, $\lambda>0$ and $f\in L^1(\Omega)$, $f\ge0$. New information on the extremal solutions is given. Equations with measure data are also considered.
@article{CMFD_2010_35_a8,
author = {H. A. Hamid and M. F. Bidaut-Veron},
title = {Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {118--125},
publisher = {mathdoc},
volume = {35},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/}
}
TY - JOUR AU - H. A. Hamid AU - M. F. Bidaut-Veron TI - Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term JO - Contemporary Mathematics. Fundamental Directions PY - 2010 SP - 118 EP - 125 VL - 35 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/ LA - ru ID - CMFD_2010_35_a8 ER -
%0 Journal Article %A H. A. Hamid %A M. F. Bidaut-Veron %T Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term %J Contemporary Mathematics. Fundamental Directions %D 2010 %P 118-125 %V 35 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/ %G ru %F CMFD_2010_35_a8
H. A. Hamid; M. F. Bidaut-Veron. Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/