Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125

Voir la notice de l'article provenant de la source Math-Net.Ru

We give existence, nonexistence and multiplicity results of nonnegative solutions for Dirichlet problems of the form $$ -\Delta_pv=\lambda f(x)(1+g(v))^{p-1}\quad\text{in}\quad\Omega,\qquad u=0\quad\text{on}\quad\partial\Omega, $$ where $\Delta_p$ is the $p$-Laplacian $(p>1)$, $g$ is nondecreasing, superlinear, and possibly convex, $\lambda>0$ and $f\in L^1(\Omega)$, $f\ge0$. New information on the extremal solutions is given. Equations with measure data are also considered.
@article{CMFD_2010_35_a8,
     author = {H. A. Hamid and M. F. Bidaut-Veron},
     title = {Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/}
}
TY  - JOUR
AU  - H. A. Hamid
AU  - M. F. Bidaut-Veron
TI  - Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 118
EP  - 125
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/
LA  - ru
ID  - CMFD_2010_35_a8
ER  - 
%0 Journal Article
%A H. A. Hamid
%A M. F. Bidaut-Veron
%T Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 118-125
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/
%G ru
%F CMFD_2010_35_a8
H. A. Hamid; M. F. Bidaut-Veron. Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/