Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give existence, nonexistence and multiplicity results of nonnegative solutions for Dirichlet problems of the form $$ -\Delta_pv=\lambda f(x)(1+g(v))^{p-1}\quad\text{in}\quad\Omega,\qquad u=0\quad\text{on}\quad\partial\Omega, $$ where $\Delta_p$ is the $p$-Laplacian $(p>1)$, $g$ is nondecreasing, superlinear, and possibly convex, $\lambda>0$ and $f\in L^1(\Omega)$, $f\ge0$. New information on the extremal solutions is given. Equations with measure data are also considered.
@article{CMFD_2010_35_a8,
     author = {H. A. Hamid and M. F. Bidaut-Veron},
     title = {Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {118--125},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/}
}
TY  - JOUR
AU  - H. A. Hamid
AU  - M. F. Bidaut-Veron
TI  - Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 118
EP  - 125
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/
LA  - ru
ID  - CMFD_2010_35_a8
ER  - 
%0 Journal Article
%A H. A. Hamid
%A M. F. Bidaut-Veron
%T Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 118-125
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/
%G ru
%F CMFD_2010_35_a8
H. A. Hamid; M. F. Bidaut-Veron. Existence and multiplicity of solutions of quasilinear equations with convex or nonconvex reaction term. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 118-125. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a8/

[1] Abdel Hamid H., Bidaut-Véron M. F., On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, Preprint

[2] Abdellaoui B., Dall'Aglio A., Peral I., “Some remarks on elliptic problems with critical growth in the gradient”, J. Differ. Equations, 222 (2006), 21–62 | DOI | MR | Zbl

[3] Bidaut-Véron M. F., “Removable singularities and existence for a quasilinear equation”, Adv. Nonlin. Stud., 3 (2003), 25–63 | MR | Zbl

[4] Bidaut-Véron M. F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl

[5] Brezis H., Cazenave T., Martel Y., Ramiandrisoa A., “Blow-up for $u_t-\Delta u=g(u)$ revisited”, Adv. Differ. Equations, 1 (1996), 73–90 | MR | Zbl

[6] Brezis H., Vazquez J., “Blow-up solutions of some nonlinear elliptic problems”, Rev. Mat. Comp., 10 (1997), 443–469 | MR | Zbl

[7] Cabre X., Sanchon M., “Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian”, Comm. Pure Appl. Anal., 6 (2007), 43–67 | MR | Zbl

[8] Dal Maso G., Murat F., Orsina L., Prignet A., “Renormalized solutions of elliptic equations with general measure data”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 28 (1999), 741–808 | MR | Zbl

[9] Ferrero A., “On the solutions of quasilinear elliptic equations with a polynomial-type reaction term”, Adv. Differ. Equations, 9 (2004), 1201–1234 | MR | Zbl

[10] Garcia Azorero J., Peral I., “Some results about the existence of a second positive solution in a quasilinear critical problem”, Indiana Univ. Math. J., 43 (1994), 941–957 | DOI | MR | Zbl

[11] Garcia Azorero J., Peral I., Manfredi J., “Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations”, Comm. Cont. Math., 3 (2000), 385–404 | MR | Zbl

[12] Garcia Azorero J., Peral I., Puel J., “Quasilinear problems with exponential growth in the reaction term”, Nonlin. Anal., 22 (1994), 481–498 | DOI | MR | Zbl

[13] Ghoussoub N., Preiss D., “A general mountain path principle for locating and classifying critical points”, Ann. Inst. Poincaré Anal. Non Linéaire, 6:5 (1989), 321–330 | MR | Zbl

[14] Grenon N., “Existence results for semilinear elliptic equations with small measure data”, Ann. Inst. Poincaré Anal. Non Linéaire, 19:1 (2002), 1–11 | DOI | MR | Zbl

[15] Jeanjean L., “On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem”, Proc. Roy. Soc. Edinburgh Sect. A, 4 (1999), 787–809 | MR | Zbl

[16] Mignot F., Puel J. P., “Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe”, Comm. Partial Differ. Equations, 5 (1980), 791–836 | DOI | MR | Zbl

[17] Nedev G., “Regularity of the extremal solution of semilinear elliptic equations”, C. R. Math. Acad. Sci. Paris, 330 (2000), 997–2002 | MR

[18] Nedev G., Extremal solutions of semilinear elliptic equations, Preprint, 2001

[19] Sanchon M., “Boundeness of the extremal solutions of some $p$-Laplacian problems”, Nonlin. Anal., 67 (2007), 281–294 | DOI | MR | Zbl

[20] Sanchon M., “Regularity of the extremal solutions of some nonlinear elliptic problems”, Potential Anal., 27 (2007), 217–224 | DOI | MR | Zbl