On perturbations of abstract fractional differential equations by nonlinear operators
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 5-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the unique solvability of a Cauchy-type problem for an abstract parabolic equation containing fractional derivatives and a nonlinear perturbation term. The result is applied to establish the solvability of the inverse coefficient problem for a fractional-order equation.
@article{CMFD_2010_35_a0,
     author = {H. K. Avad and A. V. Glushak},
     title = {On perturbations of abstract fractional differential equations by nonlinear operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/}
}
TY  - JOUR
AU  - H. K. Avad
AU  - A. V. Glushak
TI  - On perturbations of abstract fractional differential equations by nonlinear operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 5
EP  - 21
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/
LA  - ru
ID  - CMFD_2010_35_a0
ER  - 
%0 Journal Article
%A H. K. Avad
%A A. V. Glushak
%T On perturbations of abstract fractional differential equations by nonlinear operators
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 5-21
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/
%G ru
%F CMFD_2010_35_a0
H. K. Avad; A. V. Glushak. On perturbations of abstract fractional differential equations by nonlinear operators. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 5-21. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/