On perturbations of abstract fractional differential equations by nonlinear operators
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 5-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the unique solvability of a Cauchy-type problem for an abstract parabolic equation containing fractional derivatives and a nonlinear perturbation term. The result is applied to establish the solvability of the inverse coefficient problem for a fractional-order equation.
@article{CMFD_2010_35_a0,
     author = {H. K. Avad and A. V. Glushak},
     title = {On perturbations of abstract fractional differential equations by nonlinear operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--21},
     publisher = {mathdoc},
     volume = {35},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/}
}
TY  - JOUR
AU  - H. K. Avad
AU  - A. V. Glushak
TI  - On perturbations of abstract fractional differential equations by nonlinear operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2010
SP  - 5
EP  - 21
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/
LA  - ru
ID  - CMFD_2010_35_a0
ER  - 
%0 Journal Article
%A H. K. Avad
%A A. V. Glushak
%T On perturbations of abstract fractional differential equations by nonlinear operators
%J Contemporary Mathematics. Fundamental Directions
%D 2010
%P 5-21
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/
%G ru
%F CMFD_2010_35_a0
H. K. Avad; A. V. Glushak. On perturbations of abstract fractional differential equations by nonlinear operators. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fifth International Conference on Differential and Functional-Differential Equations (Moscow, August 17–24, 2008). Part 1, Tome 35 (2010), pp. 5-21. http://geodesic.mathdoc.fr/item/CMFD_2010_35_a0/

[1] Glushak A. V., “O zadache tipa Koshi dlya abstraktnogo differentsialnogo uravneniya s drobnoi proizvodnoi”, Vestnik VGU. Seriya fizika, matematika, 2001, no. 2, 74–77 | Zbl

[2] Glushak A. V., Avad Kh. K., “O vozmuschenii abstraktnogo differentsialnogo uravneniya s drobnymi proizvodnymi”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 10:1 (2008), 25–31

[3] Glushak A. V., Povalyaeva Yu. V., “O svoistvakh reshenii zadachi tipa Koshi dlya abstraktnogo differentsialnogo uravneniya s drobnoi proizvodnoi”, Spectral and Evolution Problems, 14 (2004), 163–172

[4] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | Zbl

[5] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[7] Kostin V. A., “K zadache Koshi dlya abstraktnykh differentsialnykh uravnenii s drobnymi proizvodnymi”, DAN SSSR, 326:4 (1992), 597–600 | MR | Zbl

[8] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[9] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995 | Zbl

[10] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[11] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[12] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, Izd-vo KBNTs, Nalchik, 2005

[13] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, URSS, M., 2007

[14] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[15] Arendt W., Batty C., Hieber M., Neubrander F., Laplace transforms and Cauchy problems, Birkhäuser Verlag, Basel–Boston–Berlin, 2001 | MR | Zbl

[16] El-Borai M. M., “Some probablitiy densities and fundamental solutions of fractional evolution equations”, Chaos Solitons and Fractals, 14 (2002), 433–440 | DOI | MR | Zbl

[17] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and application of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006 | MR | Zbl

[18] Prilepko A. I., Orlovsky D. G., Vasin I. A., Methods for solving inverse problems in mathematical physics, Marcel Dekker, New York–Basel, 2000 | MR | Zbl