Partition of unity and the strong ellipticity problem for functional differential operators
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 139-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2009_34_a6,
     author = {M. A. Skryabin},
     title = {Partition of unity and the strong ellipticity problem for functional differential operators},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {139--151},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2009_34_a6/}
}
TY  - JOUR
AU  - M. A. Skryabin
TI  - Partition of unity and the strong ellipticity problem for functional differential operators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2009
SP  - 139
EP  - 151
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2009_34_a6/
LA  - ru
ID  - CMFD_2009_34_a6
ER  - 
%0 Journal Article
%A M. A. Skryabin
%T Partition of unity and the strong ellipticity problem for functional differential operators
%J Contemporary Mathematics. Fundamental Directions
%D 2009
%P 139-151
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2009_34_a6/
%G ru
%F CMFD_2009_34_a6
M. A. Skryabin. Partition of unity and the strong ellipticity problem for functional differential operators. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 139-151. http://geodesic.mathdoc.fr/item/CMFD_2009_34_a6/

[1] Vishik M. I., “O silno ellipticheskikh sistemakh differentsialnykh uravnenii”, Mat. sb., 29(71):3 (1951), 615–676 | MR | Zbl

[2] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR

[3] Rossovskii L. E., “Koertsitivnost funktsionalno-differentsialnykh uravnenii”, Mat. zametki, 59:1 (1996), 103–113 | MR | Zbl

[4] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR

[5] Agmon S., “The coerciveness problem for integro-differential form”, J. Anal. Math., 6 (1958), 183–223 | DOI | MR | Zbl

[6] Figueiredo D. G., “The coerciveness problem for forms over vector-valued functions”, Comm. Pure Appl. Math., 16 (1963), 63–94 | DOI | MR | Zbl

[7] Gårding L., “Dirichlet's problem for linear elliptic partial differential equations”, Math. Scand., 1 (1953), 55–72 | MR

[8] Nečas J., Les Méthodes Directes en Théorie des Equations Elliptiques, Academia Tchecoslovaque des Sciences, Prague, 1967 | MR

[9] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Berlin, 1997 | MR | Zbl