Compact subdifferentials: the formula of finite increments and related topics
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 121-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The general properties of compact subdifferentials ($K$-subdifferentials) for mappings of a segment to a locally convex space are studied. Different forms of the general theorem of finite increments and the mean value theorem for compact subdifferentials are considered in detail with closed and open estimates.
@article{CMFD_2009_34_a5,
     author = {I. V. Orlov and F. S. Stonyakin},
     title = {Compact subdifferentials: the formula of finite increments and related topics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {121--138},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2009_34_a5/}
}
TY  - JOUR
AU  - I. V. Orlov
AU  - F. S. Stonyakin
TI  - Compact subdifferentials: the formula of finite increments and related topics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2009
SP  - 121
EP  - 138
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2009_34_a5/
LA  - ru
ID  - CMFD_2009_34_a5
ER  - 
%0 Journal Article
%A I. V. Orlov
%A F. S. Stonyakin
%T Compact subdifferentials: the formula of finite increments and related topics
%J Contemporary Mathematics. Fundamental Directions
%D 2009
%P 121-138
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2009_34_a5/
%G ru
%F CMFD_2009_34_a5
I. V. Orlov; F. S. Stonyakin. Compact subdifferentials: the formula of finite increments and related topics. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 121-138. http://geodesic.mathdoc.fr/item/CMFD_2009_34_a5/

[1] Brudno A. L., Teoriya funktsii deistvitelnogo peremennogo. Izbrannye glavy, Nauka, M., 1971, 119 pp. | MR | Zbl

[2] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968, 272 pp. | MR

[3] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978, 200 pp. | MR

[4] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 896 pp.

[5] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[6] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 360 pp.

[7] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR

[8] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 288 pp. | MR | Zbl

[9] Kusraev A. G., Kutateladze S. S., Subdifferentsialy: teoriya i prilozheniya, Nauka, Novosibirsk, 1992, 270 pp. | MR | Zbl

[10] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR

[11] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Nauka, M., 1988, 512 pp. | MR

[12] Orlov I. V., “Teorema Lagranzha v topologicheskikh i psevdotopologicheskikh vektornykh prostranstvakh”, Uchenye zapiski Simferopolskogo gos. un-ta. Matematika. Fizika. Khimiya, 1–2(40–41) (1995), 113–122

[13] Orlov I. V., “Formula konechnykh priraschenii dlya otobrazhenii v induktivnye shkaly prostranstv”, Matematicheskaya fizika, analiz, geometriya (MAG), 8:4 (2001), 419–439 | MR | Zbl

[14] Orlov I. V., Stonyakin F. S., “$K$-subdifferentsialy i $K$-teorema o srednem dlya otobrazhenii v lokalno vypuklye prostranstva”, Differentsialnye uravneniya i smezhnye voprosy, Mezhdunar. konf., posvyaschennaya pamyati I. G. Petrovskogo. Tezisy dokladov, MGU, M., 2007, 220–221

[15] Stonyakin F. S., “Kompaktnyi subdifferentsial veschestvennykh funktsii”, Dinamicheskie sistemy, 23, 2007, 99–112 | Zbl

[16] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1971, 320 pp. | MR

[17] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 472 pp.

[18] Saks S., Teoriya integrala, IL, M., 1949, 380 pp.

[19] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971, 359 pp. | MR

[20] Borwein J. M., Zhu Q. J., “A survey of subdifferential calculus with applications”, Nonlinear Anal. Ser. A: Theory Methods, 38:6 (1999), 62–76 | DOI | MR

[21] Demyanov V. F., “The rise of nonsmooth analysis: its main tools”, Kibernetika i sistemnyi analiz, 2002, no. 4, 63–85 | MR | Zbl

[22] Girejko E., “On generalized differential quotients of set-valued maps”, Rend. Semin. Mat. Torino, 63:4 (2005), 357–362 | MR | Zbl

[23] Girejko E., Piccoli B., “On some concepts of generalized differentials”, Set-Valued Anal., 15 (2007), 163–183 | DOI | MR | Zbl

[24] Michel P., Penot J. P., “Calcul sous-différentiel pour les fonctions lipschitziennes et non lipschitziennes”, C. R. Acad. Sci. Paris Sér. 1, 298 (1984), 269–272 | MR | Zbl

[25] Sussmann H. J., “Warga derivate containers and other generalized differentials”, Proc. of the 41st IEEE Conf. on Decision and Control, Vol. 1 (Las Vegas, Nevada, December 10–13, 2002), IEEE, New York, 2002, 1101–1106