Atiyah--Bott index on stratified manifolds
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 100-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the Atiyah–Bott index on stratified manifolds and propose a formula for it in topological terms. Moreover, we give examples of the calculation of the Atiyah–Bott index for geometric operators on manifolds with edges.
@article{CMFD_2009_34_a3,
     author = {V. E. Nazaikinskii and A. Yu. Savin and B. Yu. Sternin},
     title = {Atiyah--Bott index on stratified manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {100--108},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2009_34_a3/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Atiyah--Bott index on stratified manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2009
SP  - 100
EP  - 108
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2009_34_a3/
LA  - ru
ID  - CMFD_2009_34_a3
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%A A. Yu. Savin
%A B. Yu. Sternin
%T Atiyah--Bott index on stratified manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2009
%P 100-108
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2009_34_a3/
%G ru
%F CMFD_2009_34_a3
V. E. Nazaikinskii; A. Yu. Savin; B. Yu. Sternin. Atiyah--Bott index on stratified manifolds. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 100-108. http://geodesic.mathdoc.fr/item/CMFD_2009_34_a3/

[1] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “Psevdodifferentsialnye operatory na stratifitsirovannykh mnogoobraziyakh. I”, Differents. uravn., 43:4 (2007), 519–532 | MR | Zbl

[2] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “Psevdodifferentsialnye operatory na stratifitsirovannykh mnogoobraziyakh. II”, Differents. uravn., 43:5 (2007), 685–696 | MR | Zbl

[3] Nazaikinskii V. E., Savin A. Yu., Sternin B. Yu., “O gomotopicheskoi klassifikatsii ellipticheskikh operatorov na stratifitsirovannykh mnogoobraziyakh”, Izv. RAN. Ser. mat., 71:6 (2007), 91–118 | MR | Zbl

[4] Plamenevskii B. A., Senichkin V. N., “Predstavleniya $C^*$-algebr psevdodifferentsialnykh operatorov na kusochno-gladkikh mnogoobraziyakh”, Algebra i analiz, 13:6 (2001), 124–174 | MR | Zbl

[5] Atiyah M. F., Bott R., “The index problem for manifolds with boundary”, Bombay Colloquium on Differential Analysis, Oxford Univ. Press, Oxford, 1964, 175–186 | MR

[6] Higson N., Roe J., Analytic $K$-Homology, Oxford Univ. Press, Oxford, 2000, 405 pp. | MR | Zbl

[7] Monthubert B., “Pseudodifferential calculus on manifolds with corners and groupoids”, Proc. Amer. Math. Soc., 127:10 (1999), 2871–2881 | DOI | MR | Zbl

[8] Monthubert B., Nistor V., A topological index theorem for manifolds with corners 2005, arXiv: math.KT/0507601

[9] Upmeier H., “Toeplitz operators and index theory in several complex variables”, Operator Theory: Operator Algebras and Applications, Pt. 1, Amer. Math. Soc., Providence, RI, 1990, 585–598 | MR