Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 63-99.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2009_34_a2,
     author = {G. A. Kurina and E. V. Smirnova},
     title = {Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {63--99},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2009_34_a2/}
}
TY  - JOUR
AU  - G. A. Kurina
AU  - E. V. Smirnova
TI  - Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2009
SP  - 63
EP  - 99
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2009_34_a2/
LA  - ru
ID  - CMFD_2009_34_a2
ER  - 
%0 Journal Article
%A G. A. Kurina
%A E. V. Smirnova
%T Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters
%J Contemporary Mathematics. Fundamental Directions
%D 2009
%P 63-99
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2009_34_a2/
%G ru
%F CMFD_2009_34_a2
G. A. Kurina; E. V. Smirnova. Asymptotics of solutions of optimal control problems with intermediate points in quality criterion and small parameters. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 63-99. http://geodesic.mathdoc.fr/item/CMFD_2009_34_a2/

[1] Aschepkov L. T., Optimalnoe upravlenie razryvnymi sistemami, Nauka, Novosibirsk, 1987

[2] Belokopytov S. V., Dmitriev M. G., “Reshenie klassicheskikh zadach optimalnogo upravleniya s pogransloem”, Avtomatika i telemekhanika, 1989, no. 7, 71–82 | MR | Zbl

[3] Berdyshev Yu. I., “Ob odnoi posledovatelnoi optimizatsii bez dekompozitsii vo vremeni”, Kibernetika, 1987, no. 4, 32–35 | MR | Zbl

[4] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[5] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[6] Dmitriev M. G., Kurina G. A., “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51 | MR | Zbl

[7] Zakharov G. K., “Optimizatsiya stupenchatykh sistem upravleniya”, Avtomatika i telemekhanika, 1981, no. 8, 5–9 | Zbl

[8] Kurina G. A., Smirnova E. V., Chou I., Optimalnoe upravlenie v forme obratnoi svyazi dlya lineino-kvadratichnoi zadachi s promezhutochnymi tochkami, Tr. mat. fak-ta VGU (novaya seriya), 11, Nauchnaya kniga, Voronezh, 2007

[9] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[10] Pokornyi Yu. V., Zvereva M. B., Perlovskaya T. V., O nekotorykh naturalnykh odnomernykh kraevykh zadachakh, VGU, Voronezh, 2007

[11] Pontryagin L. S., Boltyanskii V. G., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[12] Smolyakov E. R., Neizvestnye stranitsy istorii optimalnogo upravleniya, Editorial URSS, M., 2002

[13] Belokopytov S. V., Dmitriev M. G., “Direct scheme in optimal control problems with fast and slow motions”, Systems Control Lett., 8:2 (1986), 129–135 | DOI | MR | Zbl

[14] Kurina G., On some linear-quadratic optimal control problems for descriptor systems, Research Reports in Mathematics No 1, Department of Mathematics, Stockholm University, 2006; http://www.math.su.se/reports/2006/1

[15] Kurina G. A., “Some non-standard linear-quadratic problems for descriptor systems”, Proc. of the 45th IEEE Conf. on Decision and Control. (San Diego, CA, USA, December 13–15, 2006), 2006, 1466–1471

[16] Zhou Y., Egerstedt M., Martin C., “Control theoretic splines with deterministic and random data”, Proc. of the 44th IEEE Conf. on Decision and Control and the European Control Conf., Seville, Spain, 2005, 362–367