Problem of small and normal oscillations of a~rotating elastic body filled with an ideal barotropic liquid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 45-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

An evolutionary problem of small motions of an ideal barotropic liquid filling a rotating isotropic elastic body is studied in the paper. Moreover, the corresponding spectral problem arising in the study of normal motions of the mentioned system is considered. First, we state the evolutionary problem, then we pass to a second-ordered differential equation in some Hilbert space. Based on this equation, we prove the uniqueness theorem for the strong solvability of the corresponding mixed problem. The spectral problem is studied in the second part of the paper. A quadratic spectral sheaf corresponding to the spectral problem was derived and studied. Problems of localization, discreteness, and asymptotic form of the spectrum are considered for this sheaf. The statement of double completeness with a defect for a system of eigenelements and adjoint elements and the statement of essential spectrum of the problem are proved.
@article{CMFD_2009_34_a1,
     author = {D. A. Zakora},
     title = {Problem of small and normal oscillations of a~rotating elastic body filled with an ideal barotropic liquid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {34},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2009_34_a1/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Problem of small and normal oscillations of a~rotating elastic body filled with an ideal barotropic liquid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2009
SP  - 45
EP  - 62
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2009_34_a1/
LA  - ru
ID  - CMFD_2009_34_a1
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Problem of small and normal oscillations of a~rotating elastic body filled with an ideal barotropic liquid
%J Contemporary Mathematics. Fundamental Directions
%D 2009
%P 45-62
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2009_34_a1/
%G ru
%F CMFD_2009_34_a1
D. A. Zakora. Problem of small and normal oscillations of a~rotating elastic body filled with an ideal barotropic liquid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 34 (2009), pp. 45-62. http://geodesic.mathdoc.fr/item/CMFD_2009_34_a1/

[1] Avakyan V. A., “Asimptoticheskoe raspredelenie spektra lineinogo puchka, vozmuschennogo analiticheskoi operator-funktsiei”, Funkts. analiz i ego pril., 12:2 (1978), 66–67 | MR | Zbl

[2] Garadzhaev A., “O normalnykh kolebaniyakh idealnoi szhimaemoi zhidkosti vo vraschayuschikhsya uprugikh sosudakh”, DAN SSSR, 269:2 (1983), 273–278 | MR | Zbl

[3] Garadzhaev A., “K zadache o kolebaniyakh idealnoi szhimaemoi zhidkosti v uprugom sosude”, DAN SSSR, 286:5 (1986), 1047–1049 | MR | Zbl

[4] Garadzhaev A., “Spektralnaya teoriya zadachi o malykh kolebaniyakh idealnoi zhidkosti vo vraschayuschemsya uprugom sosude”, Differents. uravn., 23:1 (1987), 38–47 | MR | Zbl

[5] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR

[6] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[7] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989, 416 pp. | MR

[8] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967, 464 pp. | MR

[9] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973, 576 pp. | MR

[10] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 372 pp. | Zbl

[11] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986, 260 pp. | MR | Zbl

[12] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo Mosk. un-ta, M., 1990, 311 pp. | MR

[13] Orazov M. B., Nekotorye voprosy spektralnoi teorii nesamosopryazhennykh operatorov i svyazannye s nimi zadachi iz mekhaniki, Dis. $\dots$ dokt. fiz.-mat. nauk, Ashkhabad, 1982

[14] Radzievskii G. V., Kvadratichnyi puchok operatorov, Preprint, Kiev, 1976 | MR

[15] Ralston J. V., “On stationary modes in inviscid rotating fluids”, J. Math. Anal. Appl., 44 (1973), 366–383 | DOI | MR | Zbl