Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2009_31_a0, author = {V. G. Zvyagin and M. V. Turbin}, title = {The study of initial-boundary value problems for mathematical models of the motion of {Kelvin--Voigt} fluids}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {3--144}, publisher = {mathdoc}, volume = {31}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2009_31_a0/} }
TY - JOUR AU - V. G. Zvyagin AU - M. V. Turbin TI - The study of initial-boundary value problems for mathematical models of the motion of Kelvin--Voigt fluids JO - Contemporary Mathematics. Fundamental Directions PY - 2009 SP - 3 EP - 144 VL - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2009_31_a0/ LA - ru ID - CMFD_2009_31_a0 ER -
%0 Journal Article %A V. G. Zvyagin %A M. V. Turbin %T The study of initial-boundary value problems for mathematical models of the motion of Kelvin--Voigt fluids %J Contemporary Mathematics. Fundamental Directions %D 2009 %P 3-144 %V 31 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2009_31_a0/ %G ru %F CMFD_2009_31_a0
V. G. Zvyagin; M. V. Turbin. The study of initial-boundary value problems for mathematical models of the motion of Kelvin--Voigt fluids. Contemporary Mathematics. Fundamental Directions, Hydrodynamics, Tome 31 (2009), pp. 3-144. http://geodesic.mathdoc.fr/item/CMFD_2009_31_a0/
[1] Amfilokhiev V. B., Voitkunskii Ya. I., Mazaeva N. P., Khodorkovskii Ya. S., “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningr. korablestr. in-ta, 96, 1975, 3–9
[2] Amfilokhiev V. B., Voitkunskii Ya. I., Pavlovskii V. A., “Uravneniya dvizheniya zhidkosti s uchetom ee relaksatsionnykh svoistv”, Tr. Leningr. korablestr. in-ta, 69, 1970, 19–26
[3] Amfilokhiev V. B., Pavlovskii V. A., “Eksperimentalnye dannye o laminarno-turbulentnom perekhode pri techenii polimernykh rastvorov v trubakh”, Tr. Leningr. korablestr. in-ta, 104, 1976, 3–5
[4] Astarita Dzh., Maruchchi Dzh., Osnovy gidromekhaniki nenyutonovskikh zhidkostei, Mir, M., 1978, 309 pp.
[5] Bairon B. R., Charlz K. F., “Udivitelnye polimernye zhidkosti”, Fizika za rubezhom. Ser. A, 1986, 29–51
[6] Bekkenbakh E., Bellman R., Neravenstva, Mir, M., 1965, 276 pp. | MR
[7] Betchov R., Kriminale V., Voprosy gidrodinamicheskoi ustoichivosti, Mir, M., 1971, 350 pp. | Zbl
[8] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachgykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005, 216 pp. | MR
[9] Vinogradov G. V., Malkin A. Ya., Reologiya polimerov, Khimiya, M., 1977, 438 pp.
[10] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR
[11] Garnovska V., Oskolkov A. P., “O nekotorykh dvumernykh vyrozhdayuschikhsya kvazilineinykh uravneniyakh, voznikayuschikh v teorii nenyutonovskikh zhidkostei”, Tr. Leningr. korablestr. in-ta, 91, 1974, 81–87
[12] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl
[13] Goldshtein R. V., Gorodtsov V. A., Mekhanika sploshnykh sred. Ch. 1: Osnovy i klassicheskie modeli zhidkostei, Nauka, Fizmatlit, M., 2000, 256 pp.
[14] Dmitrienko V. T., Zvyagin V. G., “Konstruktsii operatora regulyarizatsii v modelyakh dvizheniya vyazkouprugikh sred”, Vestn. VGU. Ser. fiz. matem., 2004, no. 2, 148–153
[15] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Mat. sb., 67(109):4 (1965), 609–642 | MR | Zbl
[16] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980, 382 pp. | MR
[17] Zvyagin V. G., Dmitrienko V. T., Approksimatsionno-topologicheskii podkhod k issledovaniyu zadach gidrodinamiki. Sistema Nave–Stoksa, Editorial URSS, M., 2004, 112 pp.
[18] Zvyagin V. G., Kuzmin M. Yu., “Ob odnoi zadache optimalnogo upravleniya v modeli Foigta dvizheniya vyazkouprugoi zhidkosti”, Sovrem. mat. Fundam. napravl., 16, 2006, 38–46 | MR
[19] Zvyagin V. G., Turbin M. V., “O suschestvovanii i edinstvennosti slabogo resheniya nachalno-kraevoi zadachi dlya modeli dvizheniya zhidkosti Foigta v oblasti s izmenyayuscheisya so vremenem granitsei”, Vestn. VGU. Ser. fiz. matem., 2007, no. 2, 180–197
[20] Iosida K., Funktsionalnyi analiz, Mir, M., 1967, 624 pp. | MR
[21] Karazeeva N. A., Kotsiolis A. A., Oskolkov A. P., “O dinamicheskikh sistemakh, porozhdaemykh nachalno-kraevymi zadachami dlya uravnenii dvizheniya lineinykh vyazkouprugikh zhidkostei”, Tr. Mat. in-ta AN SSSR, 188, 1990, 59–87 | MR | Zbl
[22] Kirillov A. A., Gvishiani A. D., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1979, 384 pp. | MR
[23] Kotsiolis A. A., Oskolkov A. P., “O razreshimosti fundamentalnoi nachalno-kraevoi zadachi dlya uravnenii dvizheniya zhidkosti Oldroida”, Zap. nauch. sem. LOMI, 150, 1986, 48–52 | Zbl
[24] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp. | MR
[25] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966, 499 pp. | MR
[26] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR
[27] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, GIFML, M., 1961, 204 pp.
[28] Ladyzhenskaya O. A., “Nachalno-kraevaya zadacha dlya uravnenii Nave–Stoksa v oblastyakh s menyayuscheisya so vremenem granitsei”, Zap. nauch. sem. LOMI, 11, 1968, 97–128 | MR | Zbl
[29] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970, 288 pp. | MR
[30] Ladyzhenskaya O. A., “O pogreshnostyakh v dvukh moikh publikatsiyakh po uravneniyam Nave–Stoksa i ikh ispravleniyakh”, Zap. nauch. sem. POMI, 271, 2000, 151–155 | MR | Zbl
[31] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp. | MR | Zbl
[32] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[33] Litvinov V. G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982, 376 pp. | MR | Zbl
[34] Oldroid Dzh. G., “Nenyutonovskoe techenie zhidkostei i tverdykh tel”, Reologiya: teor. i prilozh., M., 1962, 757–793
[35] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982, 270 pp. | MR | Zbl
[36] Oskolkov A. P., “O razreshimosti v tselom pervoi kraevoi zadachi dlya odnoi kvazilineinoi sistemy tretego poryadka, vstrechayuscheisya pri izuchenii dvizheniya vyazkoi zhidkosti”, Zap. nauch. sem. LOMI, 27, 1972, 145–160 | MR | Zbl
[37] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Zap. nauch. sem. LOMI, 38, 1973, 98–136 | MR | Zbl
[38] Oskolkov A. P., “O nekotorykh kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauch. sem. LOMI, 52, 1975, 128–157 | MR | Zbl
[39] Oskolkov A. P., “O nekotorykh nestatsionarnykh lineinykh i kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauch. sem. LOMI, 59, 1976, 133–177 | MR | Zbl
[40] Oskolkov A. P., “O nekotorykh modelnykh nestatsionarnykh sistemakh v teorii nenyutonovskikh zhidkostei”, Tr. Mat. in-ta AN SSSR, 127, 1975, 32–57 | MR | Zbl
[41] Oskolkov A. P., “O nekotorykh modelnykh nestatsionarnykh sistemakh v teorii nenyutonovskikh zhidkostei. II”, Zap. nauch. sem. LOMI, 84, 1979, 185–210 | MR | Zbl
[42] Oskolkov A. P., “O nekotorykh modelnykh nestatsionarnykh sistemakh v teorii nenyutonovskikh zhidkostei. III”, Zap. nauch. sem. LOMI, 96, 1980, 205–232 | MR | Zbl
[43] Oskolkov A. P., “O nekotorykh modelnykh nestatsionarnykh sistemakh v teorii nenyutonovskikh zhidkostei. IV”, Zap. nauch. sem. LOMI, 110, 1981, 141–162 | MR | Zbl
[44] Oskolkov A. P., “K teorii nestatsionarnykh techenii zhidkostei Kelvina—Foigta”, Zap. nauch. sem. LOMI, 115, 1982, 191–202 | MR
[45] Oskolkov A. P., “O nestatsionarnykh techeniyakh vyazko-uprugikh zhidkostei”, Tr. Mat. in-ta AN SSSR, 159, 1983, 103–131 | MR | Zbl
[46] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravnenii dvizhenii zhidkostei Kelvina—Foigta i zhidkostei Oldroita”, Tr. Mat. in-ta AN SSSR, 179, 1987, 126–164 | MR
[47] Oskolkov A. P., “Nachalno-kraevye zadachi s kraevym usloviem proskalzyvaniya dlya modifitsirovannykh uravnenii Nave–Stoksa”, Zap. nauch. sem. LOMI, 213, 1994, 93–115 | Zbl
[48] Pavlovskii V. A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, Dokl. AN SSSR, 200:4 (1971), 809–812
[49] Reiner M., Desyat lektsii po teoreticheskoi reologii, Gostekhizdat, M., 1947, 134 pp.
[50] Reiner M., Deformatsiya i techenie, Gostoptekhizdat, M., 1963, 381 pp.
[51] Reiner M., Reologiya, Fizmatgiz, M., 1965, 224 pp.
[52] Rektoris K., Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985, 590 pp. | MR | Zbl
[53] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. Mat. ob-va, 10, 1961, 297–350 | MR
[54] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981, 408 pp. | MR | Zbl
[55] Trusdell K., Pervonachalnyi kurs ratsionalnoi mekhaniki sploshnykh sred, Mir, M., 1975, 592 pp.
[56] Turbin M. V., “Issledovanie matematicheskoi modeli dvizheniya zhidkosti Foigta”, Vestn. VGU. Ser. fiz. matem., 2003, no. 1, 169–181
[57] Turbin M. V., “Issledovanie obobschennoi matematicheskoi modeli dvizheniya zhidkosti Kelvina–Foigta”, Vestn. VGU. Ser. fiz. matem., 2004, no. 1, 163–179
[58] Turbin M. V., “O korrektnoi postanovke nachalno-kraevykh zadach dlya obobschennoi modeli Kelvina–Foigta”, Izv. vuzov. Ser. mat., 2006, no. 3, 50–58 | MR | Zbl
[59] Uilkinson U. L., Nenyutonovskie zhidkosti, Mir, M., 1964, 216 pp.
[60] Freidental A., Geiringer Kh., Matematicheskie teorii neuprugoi sploshnoi sredy, Fizmatgiz, M., 1962, 432 pp.
[61] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 352 pp. | Zbl
[62] Amedodji K., Bayada G., Chambat M., “On the unsteady Navier–Stokes equations in a time-moving domain with velocity-pressure boundary conditions”, Nonlinear Analysis, 49 (2002), 565–587 | DOI | MR | Zbl
[63] Aubin J. P., “Un théorème de compacité”, C. R. Acad. Sci., 256 (1963), 5042–5044 | MR | Zbl
[64] Borsuk K., “Drei Sätze über die $n$-dimensionale eunlidische Sphär”, Fund. Math., 20 (1993), 177–190
[65] Coleman B. D., Duffin R. J., Mizel V., “Instability, uniqueness, and non-existence theorems for the equation $u_t=u_{xx}-u_{xtx}$ on a strip”, Arch. Ration. Mech. Anal., 19 (1965), 100–116 | DOI | MR | Zbl
[66] Coleman B. D., Markovitz H., “Normal stress effects in second-order fluids”, J. Appl. Phys., 35 (1964), 1–9 | DOI | MR | Zbl
[67] Coleman B. D., Mizel V., “Breakdown of laminar sheafing flows for second-order fluids in channels of critical width”, ZAMM Z. Angew. Math. Mech., 46 (1966), 445–448 | DOI
[68] Dmitrienko V. T., Zvyagin V. G., “The topological degree method for equations of the Navier–Stokes type”, Abstr. Appl. Anal., 1:2 (1997), 1–45 | DOI | MR | Zbl
[69] Dunn J. E., Fosdick R. L., “Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade”, Arch. Ration. Mech. Anal., 56 (1974), 191–252 | DOI | MR | Zbl
[70] Dunn J. E., Rajagopal K. R., “Fluids of differential type: critical review and thermodynamic analysis”, Int. J. Engng. Sci., 33:5 (1995), 689–729 | DOI | MR | Zbl
[71] Fosdick R. L., Rajagopal K. R., “Anamalous features in the model of ‘second order fluids’ ”, Arch. Ration. Mech. Anal., 70 (1979), 145–152 | DOI | MR | Zbl
[72] Fujita H., Sauer N., “On existence of weak solutions of the Navier–Stokes equations in region-moving boundaries”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 17 (1970), 403–420 | MR | Zbl
[73] Gori C., Obukhovskii V., Rubbioni R., Zvyagin V., “Optimization of the motion of a visco-elastic fluid via multivalued topological degree method”, Dynam. Systems Appl., 16 (2007), 89–104 | MR | Zbl
[74] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach spaces, Walter de Gruyter, Berlin–New York, 2001, 231 pp. | MR
[75] Langlois W. E., “Steady flow of a slightly viscoelastic fluid between rotating spheres”, Quart. Appl. Math., 21 (1963), 61–71 | MR | Zbl
[76] Leray J., “Etude de diverses équations intégrales nonlinéaires et de quelques problémes que pose l'hydrodynamique”, J. Math. Pures. Appl., 12 (1933), 1–82 | MR | Zbl
[77] Leray J., Schauder J., “Topologie et equations fonctionneles”, Ann. Sci. École Norm. Sup. Ser. 3, 51 (1934), 45–78 | MR | Zbl
[78] Lions J.-L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York–Berlin, 1971, 396 pp. | MR | Zbl
[79] Litvinov W. G., Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics, Birkhäuser, Basel, 2000, 522 pp. | MR | Zbl
[80] Lloyd N. G., Degree theory, Cambridge University Press, Cambridge, 1978, 171 pp. | MR | Zbl
[81] Markovitz H., Coleman B. D., “Nonsteady helical flows of second-order fluids”, Phys. of Fluids, 7 (1964), 833–841 | DOI | MR | Zbl
[82] Noll W., Truesdell C., The nonlinear field theory of mechanics, Springer, Berlin, 1965, 602 pp. | Zbl
[83] Obukhovskii V., Zecca P., Zvyagin V., “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topol. Methods Nonlinear Anal., 23:2 (2004), 323–337 | MR
[84] Oldroyd J. G., “On the formation of rheological equations of state”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 200 (1950), 523–541 | DOI | MR | Zbl
[85] Peetre J., “Another approach to elliptic boundary problems”, Commun. Pure Appl. Math., 14 (1961), 711–731 | DOI | MR | Zbl
[86] Salvi R., “On the existence of weak solutions of a nonlinear mixed problem for the Navier–Stokes equations in time-dependent domain”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 32 (1985), 213–221 | MR | Zbl
[87] Salvi R., “On the Navier–Stokes equations in non-cylindrical domains: on the existence and regularity”, Math. Z., 199 (1988), 153–170 | DOI | MR | Zbl
[88] Salvi R., “On the existence of periodic weak solutions of Navier–Stokes equations in regions with periodically moving boundaries”, Acta Appl. Math., 37 (1994), 169–179 | DOI | MR | Zbl
[89] Simon J., “Compact sets in the space $L^p(0,T;B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl
[90] Ting T.-W., “Certain non-steady flows of second order fluids”, Arch. Ration. Mech. Anal., 14 (1963), 1–26 | DOI | MR | Zbl
[91] Truesdell C., “Fluids of second grade regarded as fluids of convected elasticity”, Phys. Fluids, 8 (1965), 1936–1938 | DOI | MR
[92] Turbin M. V., “Research of a mathematical model of low-concentrated aqueous polymer solutions”, Abstr. Appl. Anal., 2006 (2006), 1–27 | DOI | MR
[93] Zvyagin V. G., Orlov V. P., “On weak solutions of the equations of motion of a viscoelastic medium with variable boundary”, Bound. Value Probl., 3 (2005), 215–245 | DOI | MR | Zbl
[94] Zvyagin V. G., Vorotnikov D. A., “Approximating-topological methods in some problems of hydrodinamics”, J. Fixed Point Theor. Appl., 3:1 (2008), 23–49 | DOI | MR | Zbl
[95] Zvyagin V., Vorotnikov D., Topological approximation methods for evolutionary problems of nonlinear hydrodinamics, Walter de Gruyter, Berlin–New York, 2008, 248 pp. | MR