Initial-boundary value problems for a class of homogeneous second-order elliptic systems on a plane with a singular point
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve initial-boundary value problems for certain model second-order elliptic systems on a plane with a singular point.
@article{CMFD_2008_29_a0,
     author = {S. A. Abdymanapov},
     title = {Initial-boundary value problems for a class of homogeneous second-order elliptic systems on a plane with a singular point},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {29},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2008_29_a0/}
}
TY  - JOUR
AU  - S. A. Abdymanapov
TI  - Initial-boundary value problems for a class of homogeneous second-order elliptic systems on a plane with a singular point
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2008
SP  - 5
EP  - 10
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2008_29_a0/
LA  - ru
ID  - CMFD_2008_29_a0
ER  - 
%0 Journal Article
%A S. A. Abdymanapov
%T Initial-boundary value problems for a class of homogeneous second-order elliptic systems on a plane with a singular point
%J Contemporary Mathematics. Fundamental Directions
%D 2008
%P 5-10
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2008_29_a0/
%G ru
%F CMFD_2008_29_a0
S. A. Abdymanapov. Initial-boundary value problems for a class of homogeneous second-order elliptic systems on a plane with a singular point. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 29 (2008), pp. 5-10. http://geodesic.mathdoc.fr/item/CMFD_2008_29_a0/

[1] Abdrakhmanov A. M., “Ob odnoi sisteme pervogo poryadka, vyrozhdayuscheisya v tochke”, Diff. uravn., 17:5 (1981), 913 | MR | Zbl

[2] Abdymanapov S. A., Tungatarov A. B., Nekotorye klassy ellipticheskikh sistem na ploskosti s singulyarnymi koeffitsientami, G– ylym, Almaty, 2005

[3] Berkembaev E. N., Tungatarov A. B., “Ob odnom klasse ellipticheskikh sistem na ploskosti 2-go poryadka s singulyarnoi tochkoi vyshe pervogo poryadka”, Vestnik KazGU im. al-Farabi. Ser. mat., mekh., inform., 1997, no. 6, 147–152

[4] Bitsadze A. V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR | Zbl

[5] Usmanov Z. D., “O beskonechno malykh izgibaniyakh poverkhnostei polozhitelnoi krivizny s izolirovannoi tochkoi uploscheniya”, Mat. sb., 83(125):4(12) (1970), 596–615 | MR | Zbl

[6] Usmanov Z. D., “Ob odnom klasse obobschennykh sistem Koshi–Rimana s singulyarnoi tochkoi”, Sib. mat. zh., 14:5 (1973), 1076–1087 | MR | Zbl

[7] Usmanov Z. D., “Beskonechno malye izgibaniya poverkhnostei polozhitelnoi krivizny s tochkoi uploscheniya”, Differential Geometry, Banach Center Publications, 12, PWN, Warsaw, 1984, 241–272 | MR

[8] Usmanov Z. D., “Izometricheski sopryazhennaya parametrizatsiya poverkhnosti v okrestnosti tochki uploscheniya”, Dokl. rasshirennykh zasedanii seminara Instituta prikladnoi matematiki im. I. N. Vekua, 1{, No 1}, Tbilis. gos. univ., Tbilisi, 1985, 205–208 | MR

[9] Usmanov Z. D., Obobschennye sistemy Koshi–Rima s singulyarnoi tochkoi, Dushanbe, 1993