A Generalization of the Fundamental Theorem of Spherical Harmonic Theory
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 102-105
Voir la notice du chapitre de livre
We consider a first kind boundary value problem for a selfadjoint differential operator with constant coefficients on a domain in $\mathbb R^n$ bounded by an ellipsoid; boundary conditions are defined by an arbitrary polynomial of degree $N$. It is proved that the solution of the problem is again a polynomial of degree $\le N$.
@article{CMFD_2007_25_a8,
author = {S. M. Nikol'skii},
title = {A {Generalization} of the {Fundamental} {Theorem} of {Spherical} {Harmonic} {Theory}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {102--105},
year = {2007},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a8/}
}
S. M. Nikol'skii. A Generalization of the Fundamental Theorem of Spherical Harmonic Theory. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 102-105. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a8/
[1] Nikolskii S. M., “Variatsionnaya problema dlya uravneniya ellipticheskogo tipa s vyrozhdeniyami na granitse”, Trudy MIAN, 150, 1979, 212–238 | MR | Zbl
[2] Sobolev S. L., Uravneniya matematicheskoi fiziki, OGIZ, M., 1947
[3] Stein I., Veis G., Vvedenie v garmonicheskii analiz v evklidovykh prostranstvakh, Mir, M., 1974 | Zbl