A Generalization of the Fundamental Theorem of Spherical Harmonic Theory
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 102-105
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a first kind boundary value problem for a selfadjoint differential operator with constant coefficients on a domain in $\mathbb R^n$ bounded by an ellipsoid; boundary conditions are defined by an arbitrary polynomial of degree $N$. It is proved that the solution of the problem is again a polynomial of degree $\le N$.
@article{CMFD_2007_25_a8,
author = {S. M. Nikol'skii},
title = {A {Generalization} of the {Fundamental} {Theorem} of {Spherical} {Harmonic} {Theory}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {102--105},
publisher = {mathdoc},
volume = {25},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a8/}
}
TY - JOUR AU - S. M. Nikol'skii TI - A Generalization of the Fundamental Theorem of Spherical Harmonic Theory JO - Contemporary Mathematics. Fundamental Directions PY - 2007 SP - 102 EP - 105 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a8/ LA - ru ID - CMFD_2007_25_a8 ER -
S. M. Nikol'skii. A Generalization of the Fundamental Theorem of Spherical Harmonic Theory. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 102-105. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a8/