On a Norm and Approximate Characteristics of Classes of Multivariable Functions
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 58-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a space of quasicontinuous functions and study its approximate characteristics, i.e., $\varepsilon$-entropy and widths. We establish inequalities for norms of trigonometric polynomials in this space. Besides, we obtain exponents of $\varepsilon$-entropy and widths of some classes of functions with low smoothness.
@article{CMFD_2007_25_a5,
     author = {B. S. Kashin and V. N. Temlyakov},
     title = {On a {Norm} and {Approximate} {Characteristics} of {Classes} of {Multivariable} {Functions}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {58--79},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a5/}
}
TY  - JOUR
AU  - B. S. Kashin
AU  - V. N. Temlyakov
TI  - On a Norm and Approximate Characteristics of Classes of Multivariable Functions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 58
EP  - 79
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a5/
LA  - ru
ID  - CMFD_2007_25_a5
ER  - 
%0 Journal Article
%A B. S. Kashin
%A V. N. Temlyakov
%T On a Norm and Approximate Characteristics of Classes of Multivariable Functions
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 58-79
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a5/
%G ru
%F CMFD_2007_25_a5
B. S. Kashin; V. N. Temlyakov. On a Norm and Approximate Characteristics of Classes of Multivariable Functions. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 58-79. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a5/

[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[2] Temlyakov V. N., “An inequality for trigonometric polynomials and its application for estimating the entropy numbers”, J. Complexity, 11 (1995), 293–307 | DOI | MR | Zbl

[3] Talagrand M., “The small ball problem for the Brownian sheet”, Ann. Probab., 22 (1994), 1331–1354 | DOI | MR | Zbl

[4] Grigorev P. G., “Ob odnoi posledovatelnosti trigonometricheskikh polinomov”, Matem. zametki, 61:6 (1997), 935–938 | MR

[5] Kashin B. S., Temlyakov V. N., “Ob odnoi norme i svyazannykh s nei prilozheniyakh”, Matem. zametki, 64:4 (1998), 637–640 | MR | Zbl

[6] Temlyakov V. N., “Otsenki nailuchshikh bilineinykh priblizhenii funktsii i approksimativnykh chisel integralnykh operatorov”, Matem. zametki, 51:5 (1992), 125–134 | MR | Zbl

[7] Kashin B. S., “O nekotorykh svoistvakh prostranstva trigonometricheskikh polinomov s ravnomernoi normoi”, Trudy MIAN, 145, 1980, 111–116 | MR | Zbl

[8] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[9] Temlyakov V. N., “An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths”, East J. Approx., 2:2 (1996), 253–262 | MR | Zbl

[10] Lorentz G. G., “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72 (1966), 903–937 | DOI | MR | Zbl

[11] Kashin B. S., Temlyakov V. N., “Ob otsenke approksimativnykh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi”, Matem. zametki, 58:6 (1995), 922–925 | MR | Zbl

[12] Temlyakov V. N., “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Trudy MIAN, 189, 1989, 138–168 | MR

[13] Temlyakov V. N., Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi, Trudy MIAN, 178, 1986 | MR | Zbl

[14] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[15] Pajor A., Tomczak-Jaegermann N., “Subspaces of small codimension of finite-dimensional Banach spaces”, Proc. Amer. Math. Soc., 97:4 (1986), 637–642 | DOI | MR | Zbl

[16] Belinskiy E. S., “Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative”, J. Approx. Theory, 93:1 (1998), 114–127 | DOI | MR

[17] Schütt C., “Entropy numbers of diagonal operators between symmetric Banach spaces”, J. Approx. Theory, 40 (1984), 121–128 | DOI | MR | Zbl

[18] Belinskii E. S., “Asimptoticheskie kharakteristiki klassov funktsii s usloviem na smeshannuyu proizvodnuyu (smeshannuyu raznost)”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavl, 1990, 22–37 | Zbl

[19] Marcinkiewicz J., Collected papers, PWN, Warszawa, 1964 | MR

[20] Šidák Z., “Rectangular confidence regions for the means of multivariate normal distributions”, J. Amer. Statist. Assoc., 62 (1967), 626–633 | DOI | MR | Zbl

[21] Gluskin E. D., “Ekstremalnye svoistva ortogonalnykh parallelepipedov i ikh prilozheniya k geometrii banakhovykh prostranstv”, Matem. sb., 136(178):1 (1988), 85–96 | MR | Zbl

[22] Bochkarev S. V., “Ryady Valle Pussena v prostranstvakh $\operatorname{BMO}$, $L_1$ i $H^1(D)$ i multiplikativnye neravenstva”, Trudy MIAN, 210, 1995, 41–64 | MR | Zbl

[23] Kashin B. S., “O svoistvakh sluchainykh sechenii $N$-mernogo kuba”, Vestn. Mosk. un-ta. Ser. 1, Matematika, mekhanika, 1983, no. 3, 8–11 | MR | Zbl