Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study differentiable functions of several variables defined on a domain $G\subset\mathbb{R}$ with irregular boundary. We suggest a new integral representation, which allow us to establish estimates for $L_p$-modules of continuity and embedding theorems for functional spaces that have defined $L_p$-modules of continuity behavior.
@article{CMFD_2007_25_a2,
     author = {O. V. Besov},
     title = {Estimates for $L_p$ {Modules} of {Continuity} on {Domains} with an {Irregular} {Boundary} and {Embedding} {Theorems}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 21
EP  - 33
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/
LA  - ru
ID  - CMFD_2007_25_a2
ER  - 
%0 Journal Article
%A O. V. Besov
%T Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 21-33
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/
%G ru
%F CMFD_2007_25_a2
O. V. Besov. Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 21-33. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[2] Globenko I. G., “Nekotorye voprosy teorii vlozheniya dlya oblastei s osobennostyami na granitse”, Matem. sb., 57:2 (1962), 201–224 | MR | Zbl

[3] Labutin D. A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Matem. zametki, 61:2 (1997), 201–219 | MR | Zbl

[4] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR