Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 21-33
Voir la notice du chapitre de livre
The aim of this paper is to study differentiable functions of several variables defined on a domain $G\subset\mathbb{R}$ with irregular boundary. We suggest a new integral representation, which allow us to establish estimates for $L_p$-modules of continuity and embedding theorems for functional spaces that have defined $L_p$-modules of continuity behavior.
@article{CMFD_2007_25_a2,
author = {O. V. Besov},
title = {Estimates for $L_p$ {Modules} of {Continuity} on {Domains} with an {Irregular} {Boundary} and {Embedding} {Theorems}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {21--33},
year = {2007},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/}
}
TY - JOUR AU - O. V. Besov TI - Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems JO - Contemporary Mathematics. Fundamental Directions PY - 2007 SP - 21 EP - 33 VL - 25 UR - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/ LA - ru ID - CMFD_2007_25_a2 ER -
O. V. Besov. Estimates for $L_p$ Modules of Continuity on Domains with an Irregular Boundary and Embedding Theorems. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 21-33. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a2/
[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR
[2] Globenko I. G., “Nekotorye voprosy teorii vlozheniya dlya oblastei s osobennostyami na granitse”, Matem. sb., 57:2 (1962), 201–224 | MR | Zbl
[3] Labutin D. A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Matem. zametki, 61:2 (1997), 201–219 | MR | Zbl
[4] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985 | MR
[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR