On the Stability of the Uniform Minimality of a~Set of Exponentials
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 165-177

Voir la notice de l'article provenant de la source Math-Net.Ru

Some conditions on sequences $(\lambda_n)$ and $(\mu_n)$ to be nearby are given in order that the corresponding systems of complex exponentials $(\exp(i\lambda_nt))$ and $(\exp(i\mu_nt))$ be simultaneously uniformly minimal in $L^p(-\pi,\pi)$, $1\le p\infty$, and in $C[-\pi,\pi]$.
@article{CMFD_2007_25_a12,
     author = {A. M. Sedletskii},
     title = {On the {Stability} of the {Uniform} {Minimality} of {a~Set} of {Exponentials}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {165--177},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a12/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - On the Stability of the Uniform Minimality of a~Set of Exponentials
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 165
EP  - 177
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_25_a12/
LA  - ru
ID  - CMFD_2007_25_a12
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T On the Stability of the Uniform Minimality of a~Set of Exponentials
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 165-177
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_25_a12/
%G ru
%F CMFD_2007_25_a12
A. M. Sedletskii. On the Stability of the Uniform Minimality of a~Set of Exponentials. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 165-177. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a12/