On the Stability of the Uniform Minimality of a~Set of Exponentials
Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 165-177
Voir la notice de l'article provenant de la source Math-Net.Ru
Some conditions on sequences $(\lambda_n)$ and $(\mu_n)$ to be nearby are given in order that the corresponding systems of complex exponentials $(\exp(i\lambda_nt))$ and $(\exp(i\mu_nt))$ be simultaneously uniformly minimal in $L^p(-\pi,\pi)$, $1\le p\infty$, and in $C[-\pi,\pi]$.
@article{CMFD_2007_25_a12,
author = {A. M. Sedletskii},
title = {On the {Stability} of the {Uniform} {Minimality} of {a~Set} of {Exponentials}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {165--177},
publisher = {mathdoc},
volume = {25},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2007_25_a12/}
}
A. M. Sedletskii. On the Stability of the Uniform Minimality of a~Set of Exponentials. Contemporary Mathematics. Fundamental Directions, Theory of functions, Tome 25 (2007), pp. 165-177. http://geodesic.mathdoc.fr/item/CMFD_2007_25_a12/