Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2007_23_a9, author = {I. J. Sirotovskiy and \`E. R. Rozendorn and N. A. Tennova}, title = {First {Approximation} {Equation} for the {Mean} {Value} of the {Jacobi} {Field} on a {Pseudo-Riemannian} {Manifold} with {Random} {Metric} of {Special} {Form}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {169--181}, publisher = {mathdoc}, volume = {23}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/} }
TY - JOUR AU - I. J. Sirotovskiy AU - È. R. Rozendorn AU - N. A. Tennova TI - First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form JO - Contemporary Mathematics. Fundamental Directions PY - 2007 SP - 169 EP - 181 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/ LA - ru ID - CMFD_2007_23_a9 ER -
%0 Journal Article %A I. J. Sirotovskiy %A È. R. Rozendorn %A N. A. Tennova %T First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form %J Contemporary Mathematics. Fundamental Directions %D 2007 %P 169-181 %V 23 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/ %G ru %F CMFD_2007_23_a9
I. J. Sirotovskiy; È. R. Rozendorn; N. A. Tennova. First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form. Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 169-181. http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/
[1] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, OGIZ, M., L., 1948 | MR | Zbl
[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1980 | MR
[3] Gilbert D., Osnovaniya geometrii, OGIZ, M., L., 1948
[4] Gromol D., Klingenberg V., Meier V., Rimanova geometriya “v tselom”, Mir, M., 1971
[5] Zeldovich Ya. B., “Nablyudeniya vo vselennoi odnorodnoi v srednem”, Astron. zh., 41 (1964), 19–24
[6] Lamburt V. G., Sokolov D. D., Tutubalin V. N., “Polya Yakobi vdol geodezicheskoi so sluchainoi kriviznoi”, Mat. zametki, 74:3 (2003), 416–424 | MR | Zbl
[7] Lamburt V. G., Rozendorn E. R., Sokolov D. D., Tutubalin V. N., “Geodezicheskie so sluchainoi kriviznoi na rimanovykh i psevdorimanovykh mnogoobraziyakh”, Tr. geom. semin., 24, KGU, Kazan, 2003, 99–106
[8] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1975 | MR | Zbl
[9] Poznyak E. G., Shikin E. V., Differentsialnaya geometriya, URSS, M., 2003
[10] Rozendorn E. R., Sokolov D. D., “O vosstanovlenii dvumernoi psevdorimanovoi metriki po zadannoi krivizne”, Fundam. prikl. mat., 11:1 (2005), 85–92 | MR | Zbl
[11] Lamburt V., Sokoloff D., Tutubalin V., Astrophys. Space Sci., 298:3 (2005), 409–418 | DOI | Zbl