First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form
Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 169-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2007_23_a9,
     author = {I. J. Sirotovskiy and \`E. R. Rozendorn and N. A. Tennova},
     title = {First {Approximation} {Equation} for the {Mean} {Value} of the {Jacobi} {Field} on a {Pseudo-Riemannian} {Manifold} with {Random} {Metric} of {Special} {Form}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {23},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/}
}
TY  - JOUR
AU  - I. J. Sirotovskiy
AU  - È. R. Rozendorn
AU  - N. A. Tennova
TI  - First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 169
EP  - 181
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/
LA  - ru
ID  - CMFD_2007_23_a9
ER  - 
%0 Journal Article
%A I. J. Sirotovskiy
%A È. R. Rozendorn
%A N. A. Tennova
%T First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 169-181
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/
%G ru
%F CMFD_2007_23_a9
I. J. Sirotovskiy; È. R. Rozendorn; N. A. Tennova. First Approximation Equation for the Mean Value of the Jacobi Field on a Pseudo-Riemannian Manifold with Random Metric of Special Form. Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 169-181. http://geodesic.mathdoc.fr/item/CMFD_2007_23_a9/

[1] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, OGIZ, M., L., 1948 | MR | Zbl

[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1980 | MR

[3] Gilbert D., Osnovaniya geometrii, OGIZ, M., L., 1948

[4] Gromol D., Klingenberg V., Meier V., Rimanova geometriya “v tselom”, Mir, M., 1971

[5] Zeldovich Ya. B., “Nablyudeniya vo vselennoi odnorodnoi v srednem”, Astron. zh., 41 (1964), 19–24

[6] Lamburt V. G., Sokolov D. D., Tutubalin V. N., “Polya Yakobi vdol geodezicheskoi so sluchainoi kriviznoi”, Mat. zametki, 74:3 (2003), 416–424 | MR | Zbl

[7] Lamburt V. G., Rozendorn E. R., Sokolov D. D., Tutubalin V. N., “Geodezicheskie so sluchainoi kriviznoi na rimanovykh i psevdorimanovykh mnogoobraziyakh”, Tr. geom. semin., 24, KGU, Kazan, 2003, 99–106

[8] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1975 | MR | Zbl

[9] Poznyak E. G., Shikin E. V., Differentsialnaya geometriya, URSS, M., 2003

[10] Rozendorn E. R., Sokolov D. D., “O vosstanovlenii dvumernoi psevdorimanovoi metriki po zadannoi krivizne”, Fundam. prikl. mat., 11:1 (2005), 85–92 | MR | Zbl

[11] Lamburt V., Sokoloff D., Tutubalin V., Astrophys. Space Sci., 298:3 (2005), 409–418 | DOI | Zbl