General Spectral Approach to the Dynamics of Continuum
Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 52-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2007_23_a3,
     author = {R. R. Aidagulov and M. V. Shamolin},
     title = {General {Spectral} {Approach} to the {Dynamics} of {Continuum}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {52--70},
     publisher = {mathdoc},
     volume = {23},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_23_a3/}
}
TY  - JOUR
AU  - R. R. Aidagulov
AU  - M. V. Shamolin
TI  - General Spectral Approach to the Dynamics of Continuum
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 52
EP  - 70
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_23_a3/
LA  - ru
ID  - CMFD_2007_23_a3
ER  - 
%0 Journal Article
%A R. R. Aidagulov
%A M. V. Shamolin
%T General Spectral Approach to the Dynamics of Continuum
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 52-70
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_23_a3/
%G ru
%F CMFD_2007_23_a3
R. R. Aidagulov; M. V. Shamolin. General Spectral Approach to the Dynamics of Continuum. Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 52-70. http://geodesic.mathdoc.fr/item/CMFD_2007_23_a3/

[1] Aidagulov R. R., Shamolin M. V., “Fenomenologicheskii podkhod k opredeleniyu mezhfaznykh sil”, Dokl. RAN, 412:1 (2007), 44–47 | MR

[2] Berd G., Molekulyarnaya gazovaya dinamika, Mir, M., 1981

[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatlit, M., 1959

[4] Egorov Yu. V., Shubin M. A., “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Elementy sovremennoi teorii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 31, VINITI, M., 1988, 5–125 | MR

[5] Zubarev D. N., Morozov V. G., Repke G., Statisticheskaya mekhanika neravnovesnykh sostoyanii, Fizmatlit, M., 2002

[6] Kulikovskii A. G., Sveshnikova E. I., Nelineinye volny v uprugikh sredakh, Moskovskii Litsei, M., 1998

[7] Lokshin A. A., Suvorova Yu. V., Matematicheskaya teoriya rasprostraneniya voln v sredakh s pamyatyu, MGU, M., 1982 | MR

[8] Lyapidevskii V. Yu., Teshukov V. M., Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000

[9] Maslov V. P., Operatornye metody, Nauka, M., 1973 | MR

[10] Mizokhato S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[11] Nigmatulin R. I., Osnovy mekhaniki geterogennykh sred, Nauka, M., 1978 | MR

[12] Nikolaevskii V. N., Geomekhanika i flyuidinamika, Nedra, M., 1996

[13] Rezibua P., De Lener M., Klassicheskaya kineticheskaya teoriya zhidkostei i gazov, Mir, M., 1980

[14] Rudyak V. Ya., Statisticheskaya teoriya dissipativnykh protsessov v gazakh i zhidkostyakh, Nauka, Novosibirsk, 1987

[15] Sedov L. I., Mekhanika sploshnykh sred, T. 1, Nauka, M., 1970

[16] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 2, Mir, M., 1975

[17] Grubb G., Functional calculus of pseudo-differential boundary problems, Birkhäuser, Basel, 1986 | MR | Zbl