Applications of Nonstandard Number Systems in Mathematical Physics
Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 182-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2007_23_a10,
     author = {N. N. Shamarov},
     title = {Applications of {Nonstandard} {Number} {Systems} in {Mathematical} {Physics}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {182--194},
     publisher = {mathdoc},
     volume = {23},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_23_a10/}
}
TY  - JOUR
AU  - N. N. Shamarov
TI  - Applications of Nonstandard Number Systems in Mathematical Physics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 182
EP  - 194
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_23_a10/
LA  - ru
ID  - CMFD_2007_23_a10
ER  - 
%0 Journal Article
%A N. N. Shamarov
%T Applications of Nonstandard Number Systems in Mathematical Physics
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 182-194
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_23_a10/
%G ru
%F CMFD_2007_23_a10
N. N. Shamarov. Applications of Nonstandard Number Systems in Mathematical Physics. Contemporary Mathematics. Fundamental Directions, Geometry and mechanics, Tome 23 (2007), pp. 182-194. http://geodesic.mathdoc.fr/item/CMFD_2007_23_a10/

[1] Berezin A. V., Kurochkin Yu. A., Tolkachev E. A., Kvaterniony v relyativistskoi fizike, Editorial URSS, 2003

[2] Berezin F. A., “Kanonicheskie preobrazovaniya operatorov v predstavlenii vtorichnogo kvantovaniya”, Dokl. AN SSSR, 137:2 (1961), 311–314 | MR | Zbl

[3] Berezin F. A., “Matematicheskie osnovy supersimmetrichnykh teorii polya”, Yadernaya fizika, 29:6 (1979), 1670–1687 | MR | Zbl

[4] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo MGU, M., 1983 | MR

[5] Devis M., Prikladnoi nestandartnyi analiz, Mir, M., 1980 | MR

[6] Kaku M., Vvedenie v teoriyu superstrun, Mir, M., 1999, 624 pp.

[7] Peskin M., Shreder D., Vvedenie v kvantovuyu teoriyu polya, RKhD, Moskva–Izhevsk, 2001

[8] Smolyanov O. G., “Teorema Grossa–Sazonova dlya znakoperemennykh tsilindricheskikh mer”, Vestn. MGU. Cer. mat., mekh., 4 (1983), 4–12 | MR | Zbl

[9] Khrennikov A. Yu., Superanaliz, Nauka-Fizmatlit, M., 1997 | MR

[10] Shvinger Yu., Kvantovaya kinematika i dinamika, Nauka, M., 1992 | MR

[11] Cutland N. J., Loeb Measures in Practice: Recent Advances, Lect. Notes Math., 1751, 2000 | MR | Zbl

[12] Kupsch J. and Smolyanov O. G., “Functional representations for Fock superalgebras”, Infinite Dim. Analysis., Quantum Probability and Rel. Topics, 1998, no. 1(2), 285–324 ; arXiv: /hep-th/9708069 | DOI | MR | Zbl | DOI

[13] Manin Ju., Topics in noncommutative geometry, Princeton University Press, Princeton, New Jersey, 1991 | MR | Zbl

[14] Martin J. L., “Generalized classical dynamics, and the “classical analogue” of a Fermi oscillator”, Proc. Roy. Soc., A251 (1959), 536–542 | MR | Zbl

[15] Rogers A., “Super Lie groups: global topology and local sructure”, J. Math. Phys., 21 (1980), 724–731 | MR

[16] Rogers A., “A global theory of supermanifolds”, J. Math. Phys., 21 (1980), 1352–1365 | DOI | MR | Zbl

[17] Schwinger J., “A note to the quantum dynamical principle”, Phil. Mag., 44 (1953), 1171–1193 | MR

[18] Sweetser D., Doing Physics with Quaternions