On the estimate of lifetime for solutions of the Cauchy--Kovalevskaya system with examples in hydrodynamics of ideal fluid with free surface
Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 133-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equations describing nonstationary flow of ideal fluid with free surface are considered. They are investigated in conformal variables. For such equations, the correct solvability is proved in a scale of spaces of analytic functions. Constructive methods of estimation of lifetime of solutions for such equations are developed and justified. An example of numerical calculation by these methods is given.
@article{CMFD_2007_21_a6,
     author = {R. V. Shamin},
     title = {On the estimate of lifetime for solutions of the {Cauchy--Kovalevskaya} system with examples in hydrodynamics of ideal fluid with free surface},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {21},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2007_21_a6/}
}
TY  - JOUR
AU  - R. V. Shamin
TI  - On the estimate of lifetime for solutions of the Cauchy--Kovalevskaya system with examples in hydrodynamics of ideal fluid with free surface
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2007
SP  - 133
EP  - 148
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2007_21_a6/
LA  - ru
ID  - CMFD_2007_21_a6
ER  - 
%0 Journal Article
%A R. V. Shamin
%T On the estimate of lifetime for solutions of the Cauchy--Kovalevskaya system with examples in hydrodynamics of ideal fluid with free surface
%J Contemporary Mathematics. Fundamental Directions
%D 2007
%P 133-148
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2007_21_a6/
%G ru
%F CMFD_2007_21_a6
R. V. Shamin. On the estimate of lifetime for solutions of the Cauchy--Kovalevskaya system with examples in hydrodynamics of ideal fluid with free surface. Contemporary Mathematics. Fundamental Directions, Proceedings of the Seminar on Differential and Functional Differential Equations supervised by A. L. Skubachevskii (Peoples' Friendship University of Russia), Tome 21 (2007), pp. 133-148. http://geodesic.mathdoc.fr/item/CMFD_2007_21_a6/

[1] Voinov V. V., Voinov O. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostyami”, Dokl. AN, 221:3 (1975), 559–562 | Zbl

[2] Gaier D., Lektsii po teorii approksimatsii v kompleksnykh oblastyakh, Mir, M., 1986 | MR | Zbl

[3] Garipov R. M., “Neustanovivshiesya volny nad podvodnym khrebtom”, Dokl. AN, 161:3 (1965), 547–550 | Zbl

[4] Dyachenko A. I., Zakharov V. E., Kuznetsov E. A., “Nelineinaya dinamika svobodnoi poverkhnosti idealnoi zhidkosti”, Fizika plazmy, 22:10 (1999), 916–928

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 7-e izd., Fizmatlit, M., 2004 | MR | Zbl

[6] Nalimov V. I., “Apriornye otsenki reshenii ellipticheskikh uravnenii v klasse analiticheskikh funktsii i ikh prilozheniya k zadache Koshi–Puassona”, Dokl. AN, 189:1 (1969), 45–49 | MR

[7] Nalimov V. I., “Zadacha Koshi–Puassona”, Dinamika sploshnoi sredy, 18 (1974), 104–210 | MR

[8] Nalimov V. I., “Nestatsionarnye vikhrevye volny”, Sib. mat. zhurn., 37:6 (1996), 1356–1366 | MR | Zbl

[9] Nirenberg L., Lektsii po nelineinomu funktsionalnomu analizu, Mir, M., 1977 | MR | Zbl

[10] Ovsyannikov L. V., “Nelineinaya zadacha Koshi v shkale banakhovykh prostranstv”, Dokl. AN, 200:4 (1971), 789–792 | MR | Zbl

[11] Protopopov B. E., “Chislennoe modelirovanie poverkhnostnykh voln v kanale peremennoi glubiny”, Vychislitelnye metody prikladnoi gidrodinamiki, 84 (1988), 91–105 | Zbl

[12] Solonnikov V. A., “Razreshimost zadachi ob evolyutsii vyazkoi neszhimaemoi zhidkosti, ogranichennoi svobodnoi poverkhnostyu, na konechnom intervale vremeni”, Algebra i analiz, 3:1 (1991), 222–257 | MR | Zbl

[13] Shamin R. V., “Ob odnom chislennom metode v zadache o dvizhenii idealnoi zhidkosti so svobodnoi poverkhnostyu”, Sib. zhurn. vych. mat., 9:4 (2006), 379–389 | Zbl

[14] Shamin R. V., “O suschestvovanii gladkikh reshenii uravnenii Dyachenko, opisyvayuschikh neustanovivshiesya techeniya idealnoi zhidkosti so svobodnoi poverkhnostyu”, Dokl. AN, 406:5 (2006), 614–615 | MR | Zbl

[15] Craig W., Sulem C., “Numerical simulation of gravity waves”, J. Comput. Phys., 108 (1993), 73–83 | DOI | MR | Zbl

[16] Craig W., Wayne C. E., “Mathematical aspects of surface water waves”, Round Table «Open Problems», International Workshop Mathematical Hydrodynamics (Moscow, June 12–17, 2006)

[17] Nishida T., “A note on a theorem of Nirenberg”, J. Differential Geom., 12 (1977), 629–633 | MR | Zbl

[18] Treves F., Ovsyannicov theorem and hyperdifferential operatore, Instituto de Mathematica Pure e Aplicada, Rio de Janeiro, 1968 | MR

[19] Tsai W., Yue D., “Computations of nonlinear free-surface flows”, Annu. Rev. Fluid Mech., 28 (1996), 249–278 | DOI | MR

[20] Wu S., “Well-posedness in Sobolev spaces of the full water wave problem in 3-D”, J. Amer. Math. Soc., 12:2 (1999), 445–495 | DOI | MR | Zbl

[21] Zakharov V. E., Dyachenko A. I., Vasilyev O. A., “New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface”, Eur. J. Mech. B Fluids, 21 (2002), 283–291 | DOI | MR | Zbl