Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 171-178
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper considers the control system of $n$ oscillators executing forced oscillations under the action of a scalar-valued control force common for all oscillators whose module is bounded. The author proves the existence of an optimal singular regime and the assertion that the optimal control has at least countably many switchings that accumulate to a conjunction point of the singular and nonsingular parts of the trajectory.
@article{CMFD_2006_19_a6,
author = {E. O. Salobutina},
title = {Regimes {Of} {More} and {More} {Frequent} {Switchings} in the {Optimal} {Control} {Problem} of {Oscillations} of $n$ {Oscillators}},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {171--178},
year = {2006},
volume = {19},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/}
}
TY - JOUR AU - E. O. Salobutina TI - Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 171 EP - 178 VL - 19 UR - http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/ LA - ru ID - CMFD_2006_19_a6 ER -
%0 Journal Article %A E. O. Salobutina %T Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators %J Contemporary Mathematics. Fundamental Directions %D 2006 %P 171-178 %V 19 %U http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/ %G ru %F CMFD_2006_19_a6
E. O. Salobutina. Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 171-178. http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/
[1] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. Mat. in-ta AN SSSR, 197, 1991, 85–166 | MR
[2] Zelikin M. I., Borisov V. F., “Osobye optimalnye rezhimy v zadachakh matematicheskoi ekonomiki”, Sovr. mat. prilozh., 11 (2003), 3–161 | MR | Zbl
[3] Kartan E., Integralnye invarianty, GITTL, M., L., 1940
[4] Salobutina E. O., “Rezhimy nakopleniya pereklyuchenii v zadache odnovremennogo upravleniya kolebaniyami dvukh ostsillyatorov”, Vestn. MGU, ser. mat., mekh., 3 (2006), 25–32 | MR
[5] Kelley H. J., Kopp R. E., Moyer M. G., “Singular extremals”, Topics Optimiz., Academic Press, N.Y., 1967, 63–103 | MR