Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators
Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 171-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the control system of $n$ oscillators executing forced oscillations under the action of a scalar-valued control force common for all oscillators whose module is bounded. The author proves the existence of an optimal singular regime and the assertion that the optimal control has at least countably many switchings that accumulate to a conjunction point of the singular and nonsingular parts of the trajectory.
@article{CMFD_2006_19_a6,
     author = {E. O. Salobutina},
     title = {Regimes {Of} {More} and {More} {Frequent} {Switchings} in the {Optimal} {Control} {Problem} of {Oscillations} of $n$ {Oscillators}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {171--178},
     publisher = {mathdoc},
     volume = {19},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/}
}
TY  - JOUR
AU  - E. O. Salobutina
TI  - Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 171
EP  - 178
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/
LA  - ru
ID  - CMFD_2006_19_a6
ER  - 
%0 Journal Article
%A E. O. Salobutina
%T Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 171-178
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/
%G ru
%F CMFD_2006_19_a6
E. O. Salobutina. Regimes Of More and More Frequent Switchings in the Optimal Control Problem of Oscillations of $n$ Oscillators. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 171-178. http://geodesic.mathdoc.fr/item/CMFD_2006_19_a6/

[1] Zelikin M. I., Borisov V. F., “Rezhimy uchaschayuschikhsya pereklyuchenii v zadachakh optimalnogo upravleniya”, Tr. Mat. in-ta AN SSSR, 197, 1991, 85–166 | MR

[2] Zelikin M. I., Borisov V. F., “Osobye optimalnye rezhimy v zadachakh matematicheskoi ekonomiki”, Sovr. mat. prilozh., 11 (2003), 3–161 | MR | Zbl

[3] Kartan E., Integralnye invarianty, GITTL, M., L., 1940

[4] Salobutina E. O., “Rezhimy nakopleniya pereklyuchenii v zadache odnovremennogo upravleniya kolebaniyami dvukh ostsillyatorov”, Vestn. MGU, ser. mat., mekh., 3 (2006), 25–32 | MR

[5] Kelley H. J., Kopp R. E., Moyer M. G., “Singular extremals”, Topics Optimiz., Academic Press, N.Y., 1967, 63–103 | MR