Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_19_a4, author = {N. B. Melnikov}, title = {Optimality of {Singular} {Curves} in the {Problem} on a {Car} with $n$ {Trailers}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {114--130}, publisher = {mathdoc}, volume = {19}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_19_a4/} }
N. B. Melnikov. Optimality of Singular Curves in the Problem on a Car with $n$ Trailers. Contemporary Mathematics. Fundamental Directions, Optimal control, Tome 19 (2006), pp. 114-130. http://geodesic.mathdoc.fr/item/CMFD_2006_19_a4/
[1] Dmitruk A. V., “Kvadratichnye dostatochnye usloviya minimalnosti anormalnykh subrimanovykh geodezicheskikh”, Itogi nauki i tekhn. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 65, VINITI, M., 1999, 5–89 | MR | Zbl
[2] Dolgaleva O. E., “Osobennosti raspredelenii Gursa v zadachakh optimalnogo upravleniya”, Vestn. MGU. Ser. 1. Mat. Mekh., 2005, no. 5, 34–39 | MR | Zbl
[3] Dolgaleva O. E., Osobye ekstremali v zadachakh optimalnogo upravleniya, opredelyayuschikh raspredelenie Gursa, Diss. kand. fiz.-mat. nauk, MGU, 2005, 89 pp.
[4] Zelikin M. I., Chastnoe soobschenie, 2001
[5] Zelikin M. I., Borisov V. F., “Sintez optimalnykh upravlenii s nakopleniem pereklyuchenii”, Itogi nauki i tekhn. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 90, VINITI, M., 2002, 5–189
[6] Melnikov N. B., “Ekstremalnye svoistva osobennostei raspredeleniya Gursa”, Usp. mat. nauk, 61:4 (2006), 191–192 | MR | Zbl
[7] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo upravleniya”, Vestn. MGU. Ser. 1. Mat. Mekh., 1959, 25–32 | Zbl
[8] Dmitruk A. V., “Quadratic order conditions of a local minimim for singular extremals in a general optimal control problem”, Differential Geometry and Control, Proc. Symp. Pure Math., 64, eds. Ferreyra G. et al., Amer. Math. Soc., 1999, 163–198 | MR | Zbl
[9] Fliess M., Levine J., Martin P., Rouchon P., “On differential flat nonlinear systems”, Nonlinear Control Systems Design, Proc. IFAC Symp., Bordeaux, 1992, 408–412
[10] Jean F., “The car with $n$ trailers: characterization of the singular configurations”, ESAIM Control, Optimization and Calculus of Variations, 1 (1996), 241–266 | DOI | MR | Zbl
[11] Kelley H. J., Kopp R. E., Moyer M. G., “Singular extremals”, Topics in Optimization. Theory and Applications, ed. Leitmann G., Academic Press, N.Y., 1967, 63–101 | MR
[12] Laumond J.-P., “Controllability of a multibody mobile robot”, Proc. Int. Conf. on Advanced robotics and Automation, Pisa, 1991, 1033–1038
[13] Luca F., Risler J.-J., “The maximum of the degree of nonholonomy for the car with $n$ trailers”, Proc. 4 IFAC Symp. on Robot Control., Capri, 1994, 165–170
[14] Montgomery R., Zhitomirskii M., “Geometric approach to Goursat flags”, Ann. Inst. Poincaré Anal. Non Linéare, 12:4 (2001), 459–493 | DOI | MR
[15] Mormul P., Cheaito M., “Rank-2 distributions satisfying the Goursat condition: all their local models in dimension 7 and 8”, ESAIM Control, Optimization and Calculus of Variations, 4 (1999), 137–158 | DOI | MR | Zbl
[16] Murray R. M., Sastry S. S., “Nonholonomic motion planning: Steering using sinusoids”, IEEE Trans. Automat. Control., 38:5 (1993), 700–716 | DOI | MR | Zbl
[17] Sordalen O. J., “Conversion of the kinematics of a car with $n$ trailers into a chain form”, IEEE Int. Conf. Robotics and Automation, Atlanta, 1993, 382–387
[18] Robbins H. M., “A generalized Legendre–Clebsh condition for singular cases of optimal control”, IBM J., 1967, 361–372 | DOI | Zbl