Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables
Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 18 (2006), pp. 101-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper is devoted to the specific class of pseudoconformal mappings of quaternion and octonion variables. Normal families of such functions are defined and investigated. Four criteria of a family to be normal are proved. Then groups of pseudoconformal diffeomorphisms of quaternion and octonion manifolds are investigated. It is proved that they are finite-dimensional Lie groups for compact manifolds. Their examples are given. Many characteristic features are found in comparison with commutatiive geometry over $\mathbf R$ or $\mathbf C$.
@article{CMFD_2006_18_a1,
     author = {S. V. Lyudkovskii},
     title = {Normal {Families} of {Functions} and {Groups} of {Pseudoconformal} {Diffeomorphisms} of {Quaternion} and {Octonion} {Variables}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {101--164},
     year = {2006},
     volume = {18},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 101
EP  - 164
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/
LA  - ru
ID  - CMFD_2006_18_a1
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 101-164
%V 18
%U http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/
%G ru
%F CMFD_2006_18_a1
S. V. Lyudkovskii. Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 18 (2006), pp. 101-164. http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/

[1] Bogolyubov N. N., Shirkov D. V., Kvantovye polya, Fizmatlit, M., 1993 | MR

[2] Bogolyubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[3] Burbaki N., Gruppy i algebry Li, Mir, M., 1976 | MR

[4] Gamilton U. R., Izbrannye trudy. Optika. Dinamika. Kvaterniony, Nauka, M., 1994 | MR

[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[6] Zorich V. A., Matematicheskii analiz, T. 1, 2, Nauka, M., 1984 | MR

[7] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973 | Zbl

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnoi peremennoi, Nauka, M., 1987 | MR

[9] Lyudkovskii S. V., “Funktsii mnogikh peremennykh chisel Keli–Diksona i mnogoobraziya nad nimi”, Sovr. mat. i ee prilozh., 28, 2005

[10] Lyudkovskii S. V., “Differentsiruemye funktsii chisel Keli–Diksona i integrirovanie na pryamoi”, Sovr. mat. i ee prilozh., 28, 2005

[11] Lyudkovskii S. V., “Algebry vektornykh polei nad telom kvaternionov”, Dokl. RAN, 403:3 (2005), 309–312 | MR | Zbl

[12] Lyudkovskii S. V., “Stokhasticheskie protsessy na geometricheskikh gruppakh petel i gruppakh diffeomorfizmov svyaznykh mnogoobrazii i assotsiirovannye unitarnye predstavleniya”, Sovr. mat. i ee prilozh., 28, 2005

[13] Petrovskii I. G., Lektsii po differentsialnym uravneniyam s chastnymi proizvodnymi, GITTL, M., 1953

[14] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[15] Solovev M. A., “Struktura prostranstva neabelevykh kalibrovochnykh polei”, Tr. fiz. in-ta im. Lebedeva, 210, 1993, 112–155 | MR

[16] Subbotin A. V., Fainberg V. Ya., “Stokhasticheskoe kvantovanie i kalibrovochno invariantnaya renormalizatsiya”, Tr. fiz. in-ta im. Lebedeva, 210, 1993, 4–83 | MR

[17] Shabat B. V., Vvedenie v kompleksnyi analiz, T. I, II, Nauka, M., 1985 | MR

[18] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[19] Asanov G. S., Finsler Geometry, Relativity, Gauge Theories, D. Reidel Publ. Comp., Dordrecht, 1985 | MR | Zbl

[20] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR | Zbl

[21] Bao D., Lafontaine J., Ratiu T., “On a non-linear equation related to the geometry of the diffeomorphism group”, Pacif. J. Math., 158 (1993), 223–242 | MR

[22] Berezin F. A., Introduction to Superanalysis, D. Reidel Publish. Comp., Kluwer group, Dordrecht, 1987 | MR | Zbl

[23] Bochner S., “Analytic and meromorphic continuation by means of Green's formula”, Ann. Math., 4:4 (1943), 652–673 | DOI | MR

[24] Bochner S., Montgomery D., “Groups of differentiable and real or complex analytic transformations”, Ann. Math., 46:4 (1945), 685–694 | DOI | MR | Zbl

[25] Bochner S., Montgomery D., “Locally compact groups of differentiable transformations”, Ann. Math., 47:4 (1946), 639–653 | DOI | MR | Zbl

[26] Bochner S., Montgomery D., “Groups on analytic manifolds”, Ann. Math., 48:3 (1947), 659–669 | DOI | MR | Zbl

[27] Cartan H., “Sur l'iteration des transformations conformes ou pseudo-conformes”, Compositio Math., 1 (1934), 223–227 | MR | Zbl

[28] Cartan H., Sur les Groupes des Transformations Analytiques, Actualités Scientifiques et Industrielles, Exposés Mathématiques IX, 198, Herman, Paris, 1935

[29] Connes A., Noncommutative Geometry, Academic Press, San Diego, 1994 | MR | Zbl

[30] DeWitt B., Supermanifolds, 2d ed, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[31] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92 (1970), 102–163 | DOI | MR | Zbl

[32] Emch G., “Mèchanique quantique quaternionienne et Relativitè restreinte”, Helv. Phys. Acta, 36 (1963), 739–788 | MR | Zbl

[33] Goto M., Grosshans F. D., Semisimple Lie Algebras, Marcel Dekker, New York, 1978 | MR | Zbl

[34] Gürsey F., Tze C.-H., On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publ. Co., Singapore, 1996 | MR | Zbl

[35] Julia G., “Sur les familles de fonctions analytiques de plusieurs variables”, Acta Math., 47 (1926), 53–115 | DOI | MR

[36] Kantor I. L., Solodovnikov A. S., Hypercomplex Numbers, Springer-Verlag, Berlin, 1989 | MR

[37] Khrennikov A., Superanalysis, Math. and its Appl., 470, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[38] Klingenberg W., Riemannian Geometry, Walter de Gruyter, Berlin, 1982 | MR | Zbl

[39] Kobayashi S., Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972 | MR

[40] Landucci M., “The automorphism group of domains with boundary points of infinite type”, Ill. J. Math., 48:3 (2004), 875–885 | MR | Zbl

[41] Lawson H. B., Michelson M.-L., Spin Geometry, Princ. Univ. Press, Princeton, 1989 | MR | Zbl

[42] Ludkovsky S. V., “Irreducible unitary representations of a diffeomorphisms group of an infinite-dimensional real manifold”, Rend. Istit. Mat. Univ. Trieste, 30 (1998), 21–43 | MR

[43] Ludkovsky S. V., van Oystaeyen F., “Differentiable functions of quaternion variables”, Bull. Sci. Math., 127 (2003), 755–796 | DOI | MR

[44] Myers S. B., Steenrod N. E., “The group of isometries of a Riemannian manifold”, Ann. Math., 40:2 (1938), 400–416 | DOI | MR

[45] Narici L., Beckenstein E., Topological Vector Spaces, Marcel Dekker, New York, 1985 | MR | Zbl

[46] van Oystaeyen F., “Algebraic geometry for associative algebras”, Lect. Notes Pure Appl. Math., 232, Marcel Dekker, New York, 2000 | MR | Zbl

[47] Porteous I. R., Topological Geometry, Van Nostrand Reinhold Company, London, 1969 | MR | Zbl

[48] Rothe H., “Systeme geometrischer analyse”, Encyklopädie der Mathematischen Wissenschaften, Band 3, Geometrie, Teubner, Leipzig, 1914–1931, 1277–1423

[49] Rudin W., Principles of Mathematical Analysis, McGraw Hill, New York, 1964 | MR | Zbl

[50] Spanier E. H., Algebraic Topology, Academic Press, New York, 1966 | MR

[51] P. Thullen, “Zu den Abbildungen durch analytische Funktionen zweier komplexen Veränderlichen”, Math. Ann., 104 (1931), 373–376 | DOI | MR | Zbl

[52] van der Waerden B. L., A History of Algebra, Springer-Verlag, Berlin, 1985 | MR

[53] Ward J. P., Quaternions and Cayley numbers, Math. and its Applic., 403, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl