Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables
Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 18 (2006), pp. 101-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the specific class of pseudoconformal mappings of quaternion and octonion variables. Normal families of such functions are defined and investigated. Four criteria of a family to be normal are proved. Then groups of pseudoconformal diffeomorphisms of quaternion and octonion manifolds are investigated. It is proved that they are finite-dimensional Lie groups for compact manifolds. Their examples are given. Many characteristic features are found in comparison with commutatiive geometry over $\mathbf R$ or $\mathbf C$.
@article{CMFD_2006_18_a1,
     author = {S. V. Lyudkovskii},
     title = {Normal {Families} of {Functions} and {Groups} of {Pseudoconformal} {Diffeomorphisms} of {Quaternion} and {Octonion} {Variables}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {101--164},
     publisher = {mathdoc},
     volume = {18},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 101
EP  - 164
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/
LA  - ru
ID  - CMFD_2006_18_a1
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 101-164
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/
%G ru
%F CMFD_2006_18_a1
S. V. Lyudkovskii. Normal Families of Functions and Groups of Pseudoconformal Diffeomorphisms of Quaternion and Octonion Variables. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 18 (2006), pp. 101-164. http://geodesic.mathdoc.fr/item/CMFD_2006_18_a1/

[1] Bogolyubov N. N., Shirkov D. V., Kvantovye polya, Fizmatlit, M., 1993 | MR

[2] Bogolyubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[3] Burbaki N., Gruppy i algebry Li, Mir, M., 1976 | MR

[4] Gamilton U. R., Izbrannye trudy. Optika. Dinamika. Kvaterniony, Nauka, M., 1994 | MR

[5] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[6] Zorich V. A., Matematicheskii analiz, T. 1, 2, Nauka, M., 1984 | MR

[7] Kurosh A. G., Lektsii po obschei algebre, Nauka, M., 1973 | Zbl

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnoi peremennoi, Nauka, M., 1987 | MR

[9] Lyudkovskii S. V., “Funktsii mnogikh peremennykh chisel Keli–Diksona i mnogoobraziya nad nimi”, Sovr. mat. i ee prilozh., 28, 2005

[10] Lyudkovskii S. V., “Differentsiruemye funktsii chisel Keli–Diksona i integrirovanie na pryamoi”, Sovr. mat. i ee prilozh., 28, 2005

[11] Lyudkovskii S. V., “Algebry vektornykh polei nad telom kvaternionov”, Dokl. RAN, 403:3 (2005), 309–312 | MR | Zbl

[12] Lyudkovskii S. V., “Stokhasticheskie protsessy na geometricheskikh gruppakh petel i gruppakh diffeomorfizmov svyaznykh mnogoobrazii i assotsiirovannye unitarnye predstavleniya”, Sovr. mat. i ee prilozh., 28, 2005

[13] Petrovskii I. G., Lektsii po differentsialnym uravneniyam s chastnymi proizvodnymi, GITTL, M., 1953

[14] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[15] Solovev M. A., “Struktura prostranstva neabelevykh kalibrovochnykh polei”, Tr. fiz. in-ta im. Lebedeva, 210, 1993, 112–155 | MR

[16] Subbotin A. V., Fainberg V. Ya., “Stokhasticheskoe kvantovanie i kalibrovochno invariantnaya renormalizatsiya”, Tr. fiz. in-ta im. Lebedeva, 210, 1993, 4–83 | MR

[17] Shabat B. V., Vvedenie v kompleksnyi analiz, T. I, II, Nauka, M., 1985 | MR

[18] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[19] Asanov G. S., Finsler Geometry, Relativity, Gauge Theories, D. Reidel Publ. Comp., Dordrecht, 1985 | MR | Zbl

[20] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR | Zbl

[21] Bao D., Lafontaine J., Ratiu T., “On a non-linear equation related to the geometry of the diffeomorphism group”, Pacif. J. Math., 158 (1993), 223–242 | MR

[22] Berezin F. A., Introduction to Superanalysis, D. Reidel Publish. Comp., Kluwer group, Dordrecht, 1987 | MR | Zbl

[23] Bochner S., “Analytic and meromorphic continuation by means of Green's formula”, Ann. Math., 4:4 (1943), 652–673 | DOI | MR

[24] Bochner S., Montgomery D., “Groups of differentiable and real or complex analytic transformations”, Ann. Math., 46:4 (1945), 685–694 | DOI | MR | Zbl

[25] Bochner S., Montgomery D., “Locally compact groups of differentiable transformations”, Ann. Math., 47:4 (1946), 639–653 | DOI | MR | Zbl

[26] Bochner S., Montgomery D., “Groups on analytic manifolds”, Ann. Math., 48:3 (1947), 659–669 | DOI | MR | Zbl

[27] Cartan H., “Sur l'iteration des transformations conformes ou pseudo-conformes”, Compositio Math., 1 (1934), 223–227 | MR | Zbl

[28] Cartan H., Sur les Groupes des Transformations Analytiques, Actualités Scientifiques et Industrielles, Exposés Mathématiques IX, 198, Herman, Paris, 1935

[29] Connes A., Noncommutative Geometry, Academic Press, San Diego, 1994 | MR | Zbl

[30] DeWitt B., Supermanifolds, 2d ed, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[31] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92 (1970), 102–163 | DOI | MR | Zbl

[32] Emch G., “Mèchanique quantique quaternionienne et Relativitè restreinte”, Helv. Phys. Acta, 36 (1963), 739–788 | MR | Zbl

[33] Goto M., Grosshans F. D., Semisimple Lie Algebras, Marcel Dekker, New York, 1978 | MR | Zbl

[34] Gürsey F., Tze C.-H., On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publ. Co., Singapore, 1996 | MR | Zbl

[35] Julia G., “Sur les familles de fonctions analytiques de plusieurs variables”, Acta Math., 47 (1926), 53–115 | DOI | MR

[36] Kantor I. L., Solodovnikov A. S., Hypercomplex Numbers, Springer-Verlag, Berlin, 1989 | MR

[37] Khrennikov A., Superanalysis, Math. and its Appl., 470, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[38] Klingenberg W., Riemannian Geometry, Walter de Gruyter, Berlin, 1982 | MR | Zbl

[39] Kobayashi S., Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, 1972 | MR

[40] Landucci M., “The automorphism group of domains with boundary points of infinite type”, Ill. J. Math., 48:3 (2004), 875–885 | MR | Zbl

[41] Lawson H. B., Michelson M.-L., Spin Geometry, Princ. Univ. Press, Princeton, 1989 | MR | Zbl

[42] Ludkovsky S. V., “Irreducible unitary representations of a diffeomorphisms group of an infinite-dimensional real manifold”, Rend. Istit. Mat. Univ. Trieste, 30 (1998), 21–43 | MR

[43] Ludkovsky S. V., van Oystaeyen F., “Differentiable functions of quaternion variables”, Bull. Sci. Math., 127 (2003), 755–796 | DOI | MR

[44] Myers S. B., Steenrod N. E., “The group of isometries of a Riemannian manifold”, Ann. Math., 40:2 (1938), 400–416 | DOI | MR

[45] Narici L., Beckenstein E., Topological Vector Spaces, Marcel Dekker, New York, 1985 | MR | Zbl

[46] van Oystaeyen F., “Algebraic geometry for associative algebras”, Lect. Notes Pure Appl. Math., 232, Marcel Dekker, New York, 2000 | MR | Zbl

[47] Porteous I. R., Topological Geometry, Van Nostrand Reinhold Company, London, 1969 | MR | Zbl

[48] Rothe H., “Systeme geometrischer analyse”, Encyklopädie der Mathematischen Wissenschaften, Band 3, Geometrie, Teubner, Leipzig, 1914–1931, 1277–1423

[49] Rudin W., Principles of Mathematical Analysis, McGraw Hill, New York, 1964 | MR | Zbl

[50] Spanier E. H., Algebraic Topology, Academic Press, New York, 1966 | MR

[51] P. Thullen, “Zu den Abbildungen durch analytische Funktionen zweier komplexen Veränderlichen”, Math. Ann., 104 (1931), 373–376 | DOI | MR | Zbl

[52] van der Waerden B. L., A History of Algebra, Springer-Verlag, Berlin, 1985 | MR

[53] Ward J. P., Quaternions and Cayley numbers, Math. and its Applic., 403, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl