Topological Transformation Groups of Manifolds over Non-Archimedean Fields, Their Representations, and Quasi-Invariant Measures,~II
Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 18 (2006), pp. 5-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Diffeomorphism groups and loop groups of manifolds on Banach spaces over non-Archimedean fields are defined. Moreover, for these groups, finite- and infinite-dimensional manifolds over the corresponding fields are considered. The group structure, the differential-geometric structure, and also the topological structure of diffeomorphism groups and loops groups are studied. We prove that these groups do not locally satisfy the Campbell–Hausdorff formula. The principal distinctions in the structure for the Archimedean and classical cases are found. The quasi-invariant measures on these groups with respect to dense subgroups are constructed. Stochastic processes on topological transformation groups of manifolds and, in particular, on diffeomorphism groups and on loop groups and also the corresponding transition probabilities are constructed. Regular, strongly continuous, unitary representations of dense subgroups of topological transformation groups of manifolds, in particular, those of diffeomorphism group and loop groups associated with quasi-invariant measures on groups and also on the corresponding configurational spaces are constructed. The conditions imposed on the measure and groups under which these unitary representations are irreducible are found. The induced representations of topological groups are studied by using quasi-invariant measures on topological groups.
@article{CMFD_2006_18_a0,
     author = {S. V. Lyudkovskii},
     title = {Topological {Transformation} {Groups} of {Manifolds} over {Non-Archimedean} {Fields,} {Their} {Representations,} and {Quasi-Invariant} {Measures,~II}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--100},
     publisher = {mathdoc},
     volume = {18},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_18_a0/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Topological Transformation Groups of Manifolds over Non-Archimedean Fields, Their Representations, and Quasi-Invariant Measures,~II
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 5
EP  - 100
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_18_a0/
LA  - ru
ID  - CMFD_2006_18_a0
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Topological Transformation Groups of Manifolds over Non-Archimedean Fields, Their Representations, and Quasi-Invariant Measures,~II
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 5-100
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_18_a0/
%G ru
%F CMFD_2006_18_a0
S. V. Lyudkovskii. Topological Transformation Groups of Manifolds over Non-Archimedean Fields, Their Representations, and Quasi-Invariant Measures,~II. Contemporary Mathematics. Fundamental Directions, Functional analysis, Tome 18 (2006), pp. 5-100. http://geodesic.mathdoc.fr/item/CMFD_2006_18_a0/

[1] Bikulov A. Kh., Volovich I. V., “$p$-adicheskoe brounovskoe dvizhenie”, Izv. RAN. Ser. mat., 61:3 (1997), 75–90 | MR | Zbl

[2] Bogolyubov N. N., Shirkov D. V., Kvantovye polya, Fizmatlit, M., 1993 | MR

[3] Bogolyubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[4] Burbaki N., Mnogoobraziya, Mir, M., 1975

[5] Burbaki N., Integrirovanie, Glavy 1–9, Nauka, M., 1970–1977 | MR

[6] Burbaki N., Gruppy i algebry Li, Mir, M., 1976 | MR

[7] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[8] Veil G., Klassicheskie gruppy, ikh invarianty i predstavleniya, Inostr. Lit., M., 1947

[9] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy diffeomorfizmov”, Uspekhi mat. nauk, 30:5 (1975), 3–50 | MR | Zbl

[10] Vladimirov V. S., “Obobschennye funktsii nad polem $p$-adicheskikh chisel”, Uspekhi mat. nauk, 43:5 (1989), 17–53

[11] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[12] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[13] Gelfand I. M., Vilenkin N. Ya., Nekotorye primeneniya garmonicheskogo analiza. Obobschennye funktsii, T. 4, Fizmatlit, M., 1961 | MR

[14] Gelfand I. M., Naimark M. A., Unitarnye predstavleniya klassicheskikh grupp, Tr. Mat. in-ta AN SSSR, 36, 1950 | MR | Zbl

[15] Go Kh.-S., Gaussovy mery v banakhovykh prostranstvakh, Mir, M., 1979

[16] Daletskii Yu. L., Shnaiderman Ya. I., “Diffuziya i kvaziinvariantnye mery na beskonechnomernykh gruppakh Li”, Funkts. anal. i ego pril., 3:2 (1969), 88–90 | MR | Zbl

[17] Dzhordzhevich G. S., Dragovich B., “$p$-adicheskii i adelnyi garmonicheskii ostsillyator s zavisyaschei ot vremeni chastotoi”, Teor. i mat. fiz., 124:2 (2000), 239–248 | MR | Zbl

[18] Kelli Dzh., Obschaya topologiya, Nauka, M., 1980

[19] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981

[20] Kozlovskii I. M., “Absolyutnye poliedralnye razlozheniya metricheskikh prostranstv”, Tr. Mosk. mat. ob-va, 40, 1979, 83–119 | MR | Zbl

[21] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[22] Kuratovskii K., Topologiya, T. 1, 2, Mir, M., 1966, 1969

[23] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[24] Leng S., Algebra, Mir, M., 1968

[25] Lyudkovskii S. V., “Kompaktnye sootnosheniya mezhdu invariantami unitarnykh grupp $U(n)$ i elementarnymi simmetrichnymi polinomami”, Teor. i mat. fiz., 75:2 (1988), 316–320 | MR

[26] Lyudkovskii S. V., “Matritsy, predstavlyayuschie kanonicheskie elementy universalnykh obertyvayuschikh klassicheskikh algebr Li v bazise Gelfanda–Tsetlina”, Vestn. MGU. Ser. 1, mat., mekh., 5 (1989), 73–76 ; 4 (1990) | MR | Zbl

[27] Lyudkovskii S. V., “Bazisy neprivodimykh predstavlenii klassicheskikh algebr Li”, Vestn. MGU. Ser. 1, mat., mekh., 5 (1990), 18–25 | MR | Zbl

[28] Lyudkovskii S. V., “Tenzornye operatory algebr Li $\mathsf{u}(n)$ i $\mathsf{o}(\nu)$”, Teor. i mat. fiz., 82:3 (1990), 474–479 | MR | Zbl

[29] Lyudkovskii S. V., “Kompaktnye sootnosheniya mezhdu invariantami klassicheskikh grupp Li i elementarnymi simmetrichnymi polinomami”, Teor. i mat. fiz., 89:3 (1991), 380–387 | MR | Zbl

[30] Lyudkovskii S. V., “Klassifikatsiya nekotorykh tipov lokalno kompaktnykh grupp po ikh unitarnym predstavleniyam”, Uspekhi mat. nauk, 47:5 (1992), 185–186 | MR | Zbl

[31] Lyudkovskii S. V., “Nepreryvnost predstavlenii topologicheskikh grupp”, Uspekhi mat. nauk, 48:6 (1993), 157–158 | MR | Zbl

[32] Lyudkovskii S. V., “Izmerimost predstavlenii lokalno kompaktnykh grupp”, Mat. sb., 186:2 (1995), 83–92 | MR | Zbl

[33] Lyudkovskii S. V., “Mery na gruppakh diffeomorfizmov nearkhimedovykh banakhovykh mnogoobrazii”, Uspekhi mat. nauk, 51:2 (1996), 169–170 | MR | Zbl

[34] Lyudkovskii S. V., “Izmerimost predstavlenii beskonechnomernykh grupp”, Uspekhi mat. nauk, 51:3 (1996), 205–206 | MR | Zbl

[35] Lyudkovskii S. V., “Kvaziinvariantnye mery na nearkhimedovykh polugruppakh petel”, Uspekhi mat. nauk, 53:3 (1998), 203–204 | MR | Zbl

[36] Lyudkovskii S. V., “Vlozheniya nearkhimedovykh banakhovykh mnogoobrazii v banakhovy prostranstva”, Uspekhi mat. nauk, 53:5 (1998), 241–242 | MR | Zbl

[37] Lyudkovskii S. V., “Mery na gruppakh diffeomorfizmov nearkhimedovykh mnogoobrazii, ikh predstavleniya i primeneniya”, Teor. i mat. fiz., 119:3 (1999), 381–396 | MR | Zbl

[38] Lyudkovskii S. V., “Nearkhimedovy poliedralnye razlozheniya ultraravnomernykh prostranstv”, Uspekhi mat. nauk, 54:5 (1999), 163–164 | MR | Zbl

[39] Lyudkovskii S. V., “Kvaziinvariantnye mery na gruppakh petel rimanovykh mnogoobrazii”, Dokl. RAN, 370:3 (2000), 306–308 | MR | Zbl

[40] Lyudkovskii S. V., “Nearkhimedovy poliedralnye razlozheniya ultraravnomernykh prostranstv”, Fundam. i prikl. mat., 6:2 (2000), 455–475 | MR | Zbl

[41] Lyudkovskii S. V., “Izmerimost avtomorfizmov topologicheskikh grupp”, Mat. zametki, 68:1 (2000), 105–112 | MR | Zbl

[42] Lyudkovskii S. V., “Predstavleniya topologicheskikh grupp, porozhdennye merami Puassona”, Uspekhi mat. nauk, 56:1 (2001), 169–170 | MR | Zbl

[43] Lyudkovskii S. V., “Kvaziinvariantnye i psevdodifferentsiruemye deistvitelnoznachnye mery na nearkhimedovom banakhovom prostranstve”, Anal. Math., 28 (2002), 287–316 | DOI | MR

[44] Lyudkovskii S. V., “Kvaziinvariantnye i psevdodifferentsiruemye mery na nearkhimedovykh banakhovykh prostranstvakh”, Uspekhi mat. nauk, 58:2 (2002), 167–168 | MR

[45] Lyudkovskii S. V., “Stokhasticheskie protsessy na gruppakh petel i diffeomorfizmov deistvitelnykh, kompleksnykh i nearkhimedovykh mnogoobrazii. Assotsiirovannye unitarnye predstavleniya”, Fund. i prikl. mat., 7:4 (2001), 1091–1105 | MR

[46] Lyudkovskii S. V., “Izomorfizmy svobodnykh lokalno vypuklykh prostranstv”, Uspekhi mat. nauk, 49:6 (1994), 207–208 | MR | Zbl

[47] Lyudkovskii S. V., “Svobodnye nearkhimedovy banakhovy prostranstva”, Fundam. i prikl. mat., 1:4 (1995), 979–987 | MR | Zbl

[48] Lyudkovskii S. V., “Topologicheskie gruppy i ikh $\kappa$-metriki”, Uspekhi mat. nauk, 48:1 (1993), 173–174 | MR | Zbl

[49] Lyudkovskii S. V., “Svobodnye lokalno vypuklye prostranstva, porozhdennye lokalno kompaktnymi gruppami”, Uspekhi mat. nauk, 48:2 (1993), 189–190 | MR | Zbl

[50] Lyudkovskii S. V., Kvaziinvariantnye i psevdodifferentsiruemye mery na nearkhimedovykh banakhovykh prostranstvakh, VINITI. Deponent 3353-B97 (17 noyabrya 1997), 78 pp.

[51] Lyudkovskii S. V., “Struktura grupp diffeomorfizmov nearkhimedovykh mnogoobrazii”, Uspekhi mat. nauk, 58:6 (2003), 155–156 | MR | Zbl

[52] Lyudkovskii S. V., “Nearkhimedovy poliedralnye razlozheniya ultraravnomernykh prostranstv”, Rezyume doklada na seminare P. S. Aleksandrova, Vestnik MGU, Ser. 1, mat. mekh., 3, 2000, 73 s

[53] Markov A. A., “O svobodnykh topologicheskikh gruppakh”, Izv. AN SSSR. Ser. Mat., 9:1 (1945), 3–64

[54] Menskii M. B., Gruppy putei. Izmereniya. Polya. Chastitsy, Nauka, M., 1983 | MR

[55] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[56] Neretin Yu. A., “Predstavleniya algebry Virasoro i affinnykh algebr”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundament. napravl., 22, VINITI, 1988, 163–230 | MR

[57] Parinov M. A., “O gruppe diffeomorfizmov, sokhranyayuschikh nevyrozhdennye analiticheskie vektornye polya”, Mat. sb., 186:5 (1995), 115–126 | MR | Zbl

[58] Pasynkov B. A., “O spektralnoi razlozhimosti topologicheskikh prostranstv”, Mat. sb., 66:1 (1965), 35–79 | MR | Zbl

[59] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[60] Pontryagin L. S., Nepreryvnye gruppy, Nauka, M., 1984 | MR

[61] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR

[62] Riordan Dzh., Kombinatornye tozhdestva, Nauka, M., 1982 | MR | Zbl

[63] Svittser R. M., Algebraicheskaya topologiya – gomotopii i gomologii, Nauka, M., 1985 | MR

[64] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975

[65] Solovev M. A., “Struktura prostranstva neabelevykh kalibrovochnykh polei”, Tr. fiz. in-ta im. P. N. Lebedeva, 210, 1993, 112–155 | MR

[66] Subbotin A. V., Fainberg V. Ya., “Stokhasticheskoe kvantovanie i kalibrovochno-invariantnaya perenormiruemost”, Tr. fiz. in-ta im. P. N. Lebedeva, 210, 1993, 4–83 | MR

[67] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[68] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992 | MR | Zbl

[69] Khelzen F., Martin A., Kvarki i leptony. Vvedenie v fiziku elementarnykh chastits, Mir, M., 1987

[70] Khenneken P. L., Tortra A., Teoriya veroyatnostei i nekotorye ee prilozheniya, Nauka, M., 1974 | MR

[71] Khrennikov A. Yu., “Matematicheskie metody nearkhimedovoi fiziki”, Uspekhi mat. nauk, 45:4 (1990), 79–110 | MR | Zbl

[72] Khrennikov A. Yu., Endo M., “Neogranichennost $p$-adicheskikh gaussovykh raspredelenii”, Izv. RAN. Ser. mat., 56 (1992), 1104–1115 | MR | Zbl

[73] Khrennikov A. Yu., “Printsip neopredelennosti dlya operatorov koordinaty i impulsa v $p$-adicheskom gilbertovom prostranstve”, Dokl. RAN, 55:2 (1997), 283–285 | MR | Zbl

[74] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, Nauka, M., 1979

[75] Cheng G.-P., Li L.-F., Kalibrovochnye teorii v fizike elementarnykh chastits, Mir, M., 1987

[76] Shavgulidze E. T., “Ob odnoi mere, kvaziinvariantnoi otnositelno deistviya gruppy diffeomorfizmov konechnomernogo mnogoobraziya”, Dokl. AN SSSR, 303:4 (1988), 811–814 | MR

[77] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[78] Engelking R., Obschaya topologiya, Mir, M., 1986 | MR

[79] Albeverio S., “Mathematical physics and stochastic analysis”, Bull. Sci. Math. Ser. 2, 117 (1993), 125–151 | MR | Zbl

[80] Albeverio S., Khrennikov A. Yu., Cianci R., “On the spectrum of the $p$-adic position operator”, J. Phys. Ser. A, 30 (1997), 881–889 | DOI | MR | Zbl

[81] Amice Y., “Interpolation $p$-adique”, Bull. Soc. Math. France, 92 (1964), 117–180 | MR | Zbl

[82] Araujo J., Schikhof W. H., “The Weierstrass–Stone approximation theorem for $p$-adic $C^n$-functions”, Ann. Math. Blaise Pascal., 1 (199), 61–74 | MR | Zbl

[83] Aref'eva I. Ya., Dragovich B., Volovich I. V., “On the $p$-adic summability of the anharmonic oscillator”, Phys. Lett., B 200 (1988), 512–514 | MR

[84] Aref'eva I. Ya., Dragovich B., Frampton P. H., Volovich I. V., Int. J. Modern Phys., 6:24 (1991), 4341–4358 | DOI | MR

[85] Arnold V. I., “Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier, 16 (1966), 319–361 | MR

[86] Banaszczyk W., Additive Subgroups of topological vector spaces, Spinger, Berlin, 1991 | MR

[87] Di Bartolo C., Gambini R., Griego J., “The extended loop group: an infinite dimensional manifold associated with the loop space”, Commun. Math. Phys., 158 (1993), 217–240 | DOI | MR | Zbl

[88] Barut A. O., Raczka R., Theory of groups representations and applications, Polish Scient. Publ., Warszawa, 1977 | MR

[89] Belopolskaya Ya. I., Dalecky Yu. L., Stochastic equations and differential geometry, Kluwer, Dordrecht, 1989 | MR

[90] Bosch S., Guntzer U., Remmert R., Non-Archimedean analysis, Spinger-Verlag, Berlin, 1984 | MR

[91] Brylinski J. L., “Loop spaces, characteristic classes and geometric quantisation”, Progr. in Math., 107 (1993) | MR | Zbl

[92] Castro C., “Fractal strings as an alternative justification for El Naschie's cantorian spacetime and the fine structure constants”, Chaos, Solitons and Fractals, 14 (2002), 1341–1351 | DOI | Zbl

[93] Cattaneo A. S., Cotta-Ramusino P., Rossi C. A., “Loop observables for BF theories in any dimension and the cohomolgy of knots”, Lett. Math. Phys., 51 (2000), 301–316 | DOI | MR | Zbl

[94] Cattaneo A. S., Cotta-Ramusino P., Fucito F. Martellini M., Rinaldi M., Tanzini A., Zeni M., “Four-dimensional Yang-Mills theory as deformation of topological BF theory”, Commun. Math. Phys., 197 (1998), 571–621 | DOI | MR | Zbl

[95] Christensen J. P. R., Topology and Borel structure, North-Holland Mathematics Studies, 10, North-Holland, Amsterdam, 1974 | MR | Zbl

[96] Constantinescu C., Spaces of measures, Spinger-Verlag, Berlin, 1984 | MR

[97] Corson H. H., Isbell J. R., “Some properties of strong uniformities”, Quart. J. Math., 11 (1960), 17–33 | DOI | MR | Zbl

[98] Dalecky Yu. L., Fomin S. V., Measures and differential equations in infinite-dimensional space, Kluwer, Dordrecht, 1991 | MR

[99] Diarra B., “Ultraproduits ultrametriques de corps values”, Ann. Sci. Univ. Clermont II, Sér. Math., Fasc., 22 (1984), 1–37 | MR | Zbl

[100] Diarra B., “On reducibility of ultrametric almost periodic linear representations”, Glasgow Math. J., 37 (1995), 83–98 | DOI | MR | Zbl

[101] Diarra B., “Sur quelques représentations $p$-adiques de $\mathbf{Z}_p$”, Indag. Math., 41:4 (1979), 481–493 | MR | Zbl

[102] Dragovich B., “On signature change in $p$-adic space-time”, Modern Phys. Lett., A 6:25 (1991), 2301–2307 | DOI | MR

[103] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of incompressible fluid”, Ann. of Math., 92 (1970), 102–163 | DOI | MR | Zbl

[104] Fell J. M. G., Doran R. S., Representations of $*$-algebras, locally compact groups, and Banach $*$-algebraic bundles, Acad. Press, Boston, 1988

[105] Fidaleo F., “Continuity of Borel actions of Polish groups on standard measure algebras”, Atti Sem. Mat. Fiz. Univ. Modena, 48 (200), 79–89 | MR | Zbl

[106] Flaschel P., Klingenberg W., Riemannsche hilbermannigfaltigkeiten. Periodische geodätische, Springer-Verlag, Berlin, 1972 | MR | Zbl

[107] Fresnel J., van der Put M., Géométrie analytique rigide et applications, Birkhäuser, Boston, 1981 | MR | Zbl

[108] Freudenthal H., “Entwicklungen von Raumen und ihren gruppen”, Compositio Mathem., 4:2 (1937), 145–234 | MR | Zbl

[109] Gajer P., “Higher holonomies, geometric loop groups and smooth deligne cohomology”, Advances in Geometry, Progr. Math., 172, ed. J.-L. Brylinski, Birkhäuser, Boston, 1999, 195–235 | MR | Zbl

[110] Glöckner H., Neeb K.-H., “Banach-Lie quotients, enlargibility and universal complexification”, J. Reine Angew. Math., 560 (2003), 1–28 | DOI | MR | Zbl

[111] Gruenberg K., “Profinite groups”, Algebraic number theory, Chapter V., eds. J. W. S. Cassels and A. Fröhlich, Academic Press, London, 1967 | MR

[112] Hector G., Hirsch U., Introduction to geometry of foliations, Friedr. Vieweg and Sons, Braunschweig, 1981 | MR | Zbl

[113] Henderson D. W., “Infinite-dimensional manifolds are open subsets of Hilbert space”, Topology, 9 (1970), 25–35 | DOI | MR

[114] Hirai T., “Irreducible unitary representations of the group of diffeomorphisms of a non-compact manifold”, J. Math. Kyoto Univ., 33:3 (1993), 827–864 | MR | Zbl

[115] Hirsch M. W., Differential topology, Springer-Verlag, New York, 1976 | MR

[116] Isbell J. R., “Euclidean and weak uniformities”, Pacif. J. Math., 8:1 (1958), 67–86 | MR | Zbl

[117] Isbell J. R., “On finite-dimensional uniform spaces”, Pacif. J. Math., 9:1 (1959), 107–121 | MR | Zbl

[118] Isbell J. R., “Irreducible polyhedral expansions”, Indag. Math., 23:2 (1961), 242–248 | MR

[119] Isbell J. R., “Uniform neighborhood retracts”, Pacif. J. Math., 11:2 (1961), 609–648 | MR | Zbl

[120] Isbell J. R., “Uniform spaces”, AMS Mathem. Surveys, 12, Providence, R.I., USA, 1964 | MR | Zbl

[121] Isham C. J., “Topological and global aspects of quantum theory”, Relativity, groups and topology II, eds. B. S. De Witt, R. Stora, Elsevier Sci. Publ., Amsterdam, 1984, 1007–1290 | MR

[122] Itzkowitz G., Rothman S., Strassberg H., Wu T. S., “Characterization of equivalent uniformities in topological groups”, Topology and Appl., 47:1 (1992), 9–34 | DOI | MR | Zbl

[123] Jang Y., Non-Archimedean quantum mechanics, Tohoku Math. Publ., 10, 1998 | MR | Zbl

[124] Khrennikov A. Yu., “Ultrametric Hilbert space representation of quantum mechanics with a finite exactness”, Found. Phys., 26 (1996), 1033–1054 | DOI | MR

[125] Khrennikov A. Yu., Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[126] Khrennikov A., Ludkovsky S. V., “Non-Archimedean Stochastic Processes”, Contemporary Mathematics. Ultametric Functional Analysis, Seventh International Conference on $p$-adic Functional Analysis (June 17–21, 2002) | MR

[127] Klingenberg W., Riemannian geometry, Walter de Gruyter, Berlin, 1982 | MR | Zbl

[128] Kobayashi S., Transformation groups in differential geometry, Springer-Verlag, Berlin, 1972 | MR

[129] Koblitz N., $p$-adic numbers, $p$-adic analysis and zeta functions, Springer-Verlag, New York, 1977 | MR | Zbl

[130] Kosyak A. V., “Irreducible Gaussian representations of the group of the interval and circle diffeomorphisms”, J. Funct. Anal., 125 (1994), 493–547 | DOI | MR | Zbl

[131] Kunen K., Set theory, Nort-Holland Pub. Com., Amsterdam, 1980 | MR

[132] Littlewood D. E., The theory of group characters and matrix representations of groups, Oxford Univ. Press, Oxford, 1950 | MR | Zbl

[133] Ludkovsky S. V., “Irreducible unitary representations of non-Archimedean groups of diffeomorphisms”, Southeast Asian Bull. Math., 22:3 (1998), 301–319 | MR

[134] Ludkovsky S. V., “Irreducible unitary representations of a diffeomorphisms group of an infinite-dimensional real manifold”, Rend. dell'Istituto di Matem. dell'Università di Trieste. Nuova Serie, 29 (1998), 21–43 | MR

[135] Ludkovsky S. V., “Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional real manifold and induced irreducible unitary representations”, Rend. dell'Istituto di Matem. dell'Università di Trieste. Nuova Serie, 30 (1999), 101–134 | MR

[136] Ludkovsky S. V., “Properties of quasi-invariant measures on topological groups and associated algebras”, Annal. Math. B. Pascal, 6:1 (1999), 33–45 | MR | Zbl

[137] Ludkovsky S. V., “Quasi-invariant measures on non-Archimedean groups and semigroups of loops and paths, their representations, I, II”, Annal. Math. B. Pascal, 7:2 (2000), 19–53, 55–80 | MR | Zbl

[138] Ludkovsky S. V., “Poisson measures for topological groups and their representations”, Southeast Asian Bull. Math., 25:4 (2001), 653–680 | DOI | MR

[139] Ludkovsky S. V., “Generalized geometric loop groups of complex manifolds, Gaussian quasi-invariant measures on them and their representations”, J. Math. Sci., 122:1 (2004), 2984–3010 | DOI | MR

[140] Ludkovsky S. V., “Stochastic processes on non-Archimedean Banach spaces”, Int. J. Math. and Math. Sci., 21 (2003), 1341–1363 | DOI | MR | Zbl

[141] Ludkovsky S. V., “Stochastic antiderivational equations on non-Archimedean Banach spaces”, Int. J. Math. and Math. Sci., 41 (2003), 2587–2602 | DOI | MR | Zbl

[142] Ludkovsky S. V., “Stochastic processes on totally disconnected topological groups”, Int. J. Math. and Math. Sci., 48 (2003), 3067–3089 | DOI | MR | Zbl

[143] Ludkovsky S. V., “Quasi-invariant and pseudo-differentiable measures with values in non-Archimedean fields on a non-Archimedean Banach space”, J. Math. Sci., 122:1 (2004), 2949–2983 | DOI | MR | Zbl

[144] Ludkovsky S. V., “A structure and representations of diffeomorphism groups of non-Archimedean manifolds”, Southeast Asian Bull. Math., 26 (2003), 975–1004 | MR | Zbl

[145] Ludkovsky S. V., “Stochastic processes and antiderivational equations on non-Archimedean manifolds”, Int. J. of Math. and Math. Sci., 31 (2004), 1633–1651 | DOI | MR

[146] Ludkovsky S. V., Representations and structure of groups of diffeomorphisms of non-Archimedean Banach manifolds, I, Preprint IC/96/180 (September 1996), Intern. Centre for Theor. Phys., Trieste, Italy, 24 pp.

[147] Ludkovsky S. V., Representations and structure of groups of diffeomorphisms of non-Archimedean Banach manifolds, II, Preprint IC/96/181 (September 1996), Intern. Centre for Theor. Phys., Trieste, Italy, 23 pp.

[148] Ludkovsky S. V., Quasi-invariant measures on a group of diffeomorphisms of an infinite-dimensional Hilbert manifold and its representations, Preprint IC/96/202 (October 1996), Intern. Centre for Theor. Phys., Trieste, Italy, 32 pp.

[149] Ludkovsky S. V., Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space, Preprint IC/96/210 (October 1996), Intern. Centre for Theor. Phys., Trieste, Italy, 50 pp.

[150] Ludkovsky S. V., Quasi-invariant measures on a non-Archimedean group of diffeomorphisms and on a Banach manifold, Preprint IC/96/215 (October 1996), Intern. Centre for Theor. Phys., Trieste, Italy, 25 pp.

[151] Ludkovsky S. V., Quasi-invariant measures on groups of diffeomorphisms of real Banach manifolds, Preprint IC/96/218 (October 1996), Intern. Centre for Theor. Phys., Trieste, Italy, 20 pp.

[152] Ludkovsky S. V., Non-Archimedean polyhedral decompositions of ultrauniform spaces, Preprint IHES/M/97/90 (Décembre 1997), Inst. des Hautes Études Scient., Bures-sur-Yvette, France, 23 pp.

[153] Ludkovsky S. V., Gaussian quasi-invariant measures on loop groups and semigroups for real manifolds and their representations, Preprint. IHES/M/97/95 (Décembre 1997), Inst. des Hautes Études Scient., Bures-sur-Yvette, France, 32 pp.

[154] Ludkovsky S. V., Preprint IHES/M/98/36, Inst. des Hautes Études Scient., Bures-sur-Yvette, France, 1998, 42 pp.

[155] Ludkovsky S. V., Properties of quasi-invariant measures on topological groups and associated algebras, Preprint IHES/M/98/85 (Décembre 1998), Inst. des Hautes Études Scient., Bures-sur-Yvette, France, 12 pp.

[156] Ludkovsky S. V., Poisson measures for topological groups and their representations, Preprint IHES/M/98/88, Inst. des Hautes Études Scient., Bures-sur-Yvette, France, 1998, 39 pp.

[157] Ludkovsky S. V., A structure and representations of diffeomorphism groups of non-Archimedean manifolds, Preprint math.GR/0004126 (April 2000), Los Alamos Nat. Lab. USA, 32 pp.

[158] Ludkovsky S. V., Absolute non-Archimedean polyhedral decompositions of ultrauniform spaces, Preprint math.AT/0005205 (May 2000), Los Alamos Nat. Lab. USA, 39 pp.

[159] Ludkovsky S. V., Quasi-invariant and pseudo-differentiable measures on non-Archimedean Banach spaces with values in non-Archimedean fields, Preprint math.GM/0106170 (June 2001), Los Alamos Nat. Lab. USA., 48 pp.

[160] Ludkovsky S. V., Stochastic processes on non-Archimedean spaces. I: Stochastic processes on Banach spaces, Preprint math.GM/0104069 (April 2001), Los Alamos Nat. Lab., USA, 32 pp.

[161] Ludkovsky S. V., Stochastic processes on non-Archimedean spaces. II: Stochastic antiderivational equations, Preprint math.GM/0104070 (April 2001), Los Alamos Nat. Lab., USA, 20 pp.

[162] Ludkovsky S. V., Stochastic processes on non-Archimedean spaces. III: Stochastic processes on totally disconnected topological groups, Preprint math.GM/0106132 (June 2001), Los Alamos Nat. Lab., USA, 36 pp.

[163] Ludkovsky S. V., Diarra B., “Profinite and finite groups associated with loop and diffeomorphism groups of non-Archimedean manifolds”, Int. J. Math. and Math. Sci., 42 (2003), 2673–2688 | DOI | MR | Zbl

[164] Ludkovsky S. V., The non-Archimedean analogs of the Bochner–Kolmogorov, Minlos–Sazonov and Kakutani theorems, Preprint math.FA/0010230 (October 2000), Los Alamos Nat. Lab., USA, 32 pp.

[165] Ludkovsky S. V., Diarra B., “Spectral integration and spectral theory for non-Archimedean Banach spaces”, Int. J. Math. and Math. Sci., 31:7 (2002), 421–442 | DOI | MR | Zbl

[166] Ludkovsky S. V., Diarra B., Spectral integration and spectral theory for non-Archimedean Banach spaces, Preprint math.SP/0101090 (January 2001), Los Alamos Nat. Lab., USA, 33 pp. | MR

[167] Ludkovsky S. V., Khrennikov A. Yu., “Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields”, Markov Processes and Related Fields, 9:1 (2003), 131–162 | MR | Zbl

[168] Ludkovsky S. V., Diarra B., Profinite and finite groups associated with loop and diffeomorphism groups of non-Archimedean manifolds, Preprint math.GR/0101087 (January 2001), Los Alamos National Laboratory, USA, 14 pp. | MR

[169] Ma̧drecki A., “Minlos' theorem in non-Archimedean locally convex spaces”, Comment. Math., 30 (1991), 101–111 | MR

[170] Ma̧drecki A., “Some negative results on existence of Sazonov topology in $l$-adic Frechet spaces”, Arch. Math., 56 (1991), 601–610 | DOI | MR

[171] Ma̧drecki A., “On Sazonov type topology in $p$-adic Banach space”, Math. Zeit., 188 (1985), 225–236 | DOI | MR

[172] Mather J., “Commutators of diffeomorphisms, I, II”, Comment. Math. Helv., 49 (1974), 512–528 ; 50 (1975), 33–40 | DOI | MR | Zbl | DOI | MR | Zbl

[173] Milnor J., “Microbundles-I”, Topology, 3:1 (1964–1965), 53–80, suppl. | DOI | MR | Zbl

[174] Mitchell B., Theory of categories, Acad. Press, New York, 1965 | MR | Zbl

[175] Monna A. H., Springer T. A., “Integration non-Archimedienne”, Indag. Math., 25 (1963), 634–653 | MR

[176] Narici L., Beckenstein E., Topological vector spaces, Marcel Dekker Inc., New York, 1985 | MR | Zbl

[177] Neeb K.-H., “On a theorem of S. Banach”, J. Lie Theory, 8 (1997), 293–300 | MR

[178] Ø{k}sendal B., Stochastic differential equations, Springer-Verlag, Berlin, 1995 | MR

[179] Omori H., “Groups of diffeomorphisms and their subgroups”, Trans. Amer. Math. Soc., 179 (1973), 85–121 | DOI | MR

[180] Omori H., “Local structures of groups of diffeomorphisms”, J. Math. Soc. Japan, 24:1 (1972), 60–88 | DOI | MR | Zbl

[181] Reed M., Simon B., Methods of modern mathematical physics, 1, 2, Acad. Press, New York, 1972, 1975

[182] Robert A., “Représentations $p$-adiques irréductibles de sous-groupes ouverts de $\mathrm{SL}_2(\mathbf{Z}_p)$”, C. R. Acad. Sci. Paris. Série I, 98:11 (1984), 237–240 | MR

[183] van Rooij A. C. M., Non-Archimedean functional analysis, Marcel Dekker Inc., New York, 1978 | MR

[184] van Rooij A. C. M., Notes on $p$-adic Banach spaces, Report 7633, Math. Inst., Kath. Univ., Nijmegen, The Netherlands, 1976

[185] van Rooij A. C. M., Schikhof W. H., “Group representations in non-Archimedean Banach spaces”, Bull. Soc. Math. France. Memoire, 39–40 (1974), 329–340 | MR | Zbl

[186] Schikhof W. H., Ultrametric calculus, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[187] Schikhof W. H., Non-Archimedean calculus, Report 7812, Math. Inst., Kath. Univ., Nijmegen, The Netherlands, 1978 | MR | Zbl

[188] Schikhof W. H., On $p$-adic compact operators, Report 8911, Math. Inst, Kath. Univ., Nijmegen, The Netherlands, 1989

[189] Schikhof W. H., “A Radon-Nikodym theorem for non-Archimedean integrals and absolute continuous measures on groups”, Indag. Mathem. Ser. A, 33:1 (1971), 78–85 | MR

[190] Shimomura H., “Poisson measures on the configuration space and unitary representations of the group of diffeomorphisms”, J. Math. Kyoto Univ., 34 (1994), 599–614 | MR | Zbl

[191] Shkoller S., “Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics”, J. Funct. Anal., 160 (1998), 337–365 | DOI | MR | Zbl

[192] Straume E., “Compact differentiable transformation groups on exotic spheres”, Math. Ann., 299 (1994), 355–389 | DOI | MR | Zbl

[193] Swan R. C., “The Grothendieck ring of a finite group”, Topology, 2 (1963), 85–110 | DOI | MR | Zbl

[194] Tate J., Rigid analytic spaces, IHES, Bures-sur-Yvette, France, 1962

[195] Tate J., “Rigid analytic spaces”, Invent. Math., 12 (1971), 257–289 | DOI | MR | Zbl

[196] Topsoe F., “Compactness and tightness in a space of measures with the topology of weak convergence”, Math. Scand., 34 (1974), 187–210 | MR | Zbl

[197] Topsoe F., “Some special results on converging sequences of Radon measures”, Manuscripta Math., 19 (1976), 1–14 | DOI | MR | Zbl

[198] Üstünel A. S., Zakai M., Transformation of measure on Wiener space, Springer-Verlag, Berlin, 2000 | MR

[199] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[200] Weil A., Basic number theory, Springer-Verlag, Berlin, 1973

[201] Weil A., “L'integrtion dans les groupes topologiques et ses applications”, Actual. Sci. Indust., 869, Herman, Paris, 1940, 158 pp. | MR | Zbl