Spectral properties of some problems in mechanics of strongly inhomogeneous media
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 88-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spectral properties of the following three homogenized problems in mechanics of strongly inhomogeneous media are considered: the problem of “double porosity”, the problem of vibration of a mixture of two viscous compressible fluids, and the problem of vibration of a medium consisting of an elastic frame and a viscous fluid. Interesting results about the structure of spectra and the presence of so-called “spectral gaps” are obtained for each of these cases.
@article{CMFD_2006_17_a6,
     author = {D. A. Kosmodem'yanskii and A. S. Shamaev},
     title = {Spectral properties of some problems in mechanics of strongly inhomogeneous media},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {88--109},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a6/}
}
TY  - JOUR
AU  - D. A. Kosmodem'yanskii
AU  - A. S. Shamaev
TI  - Spectral properties of some problems in mechanics of strongly inhomogeneous media
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 88
EP  - 109
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a6/
LA  - ru
ID  - CMFD_2006_17_a6
ER  - 
%0 Journal Article
%A D. A. Kosmodem'yanskii
%A A. S. Shamaev
%T Spectral properties of some problems in mechanics of strongly inhomogeneous media
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 88-109
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a6/
%G ru
%F CMFD_2006_17_a6
D. A. Kosmodem'yanskii; A. S. Shamaev. Spectral properties of some problems in mechanics of strongly inhomogeneous media. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 88-109. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a6/

[1] Akulenko L. D., Nesterov S. V., “Issledovanie inertsionnykh i uprugikh svoistv propitannykh zhidkostyu granulirovannykh sred rezonansnym metodom”, Izv. RAN MTT, 5 (2002), 145–156

[2] Akulenko L. D., Nesterov S. V., “Inertsionnye i dissipativnye svoistva poristoi sredy, zapolnennoi vyazkoi zhidkostyu”, Izv. RAN MTT, 1 (2005), 109–120

[3] Zhikov V. V., “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Mat. sb., 191:7 (2000), 31–72 | MR | Zbl

[4] Nesterov V. S., “Vyazko-inertsionnaya dispersiya i zatukhanie zvuka v suspenzii vysokoi kontsentratsii”, Akusticheskii zhurnal RAN, 5:3 (1956), 337–344 | MR

[5] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984, 472 pp. | MR

[6] Shamaev A. S., Samarin V. A., “O rasprostranenii akusticheskikh voln v srede, sostoyaschei iz vyazkoi zhidkosti i uprugogo materiala” (to appear)

[7] Biot M. A., “Mechanics of deformation and acoustic propagation in porous media”, J. Appl. Phys., 33 (1962), 1482–1498 | DOI | MR | Zbl

[8] Bourgeat A., Piatnitski A., “Approximations of effective coefficients in stochastic homogenization”, Ann. Inst. H. Poincare Prob. Statistics, 40:2 (2004), 153–165 | MR | Zbl

[9] Gilbert R. P., Mikelić A., “Homogenizing the acoustic properties of the seabed: Part I”, Nonlinear Anal., 40 (2000), 185–212 | DOI | MR | Zbl

[10] Nguetseng G., “Asymtotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21:6 (1990), 1396–1414 | DOI | MR