A parabolic equation with nonlocal conditions
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear parabolic equation with the principal part in divergence form, a boundary-value problem with nonlocal (irregular) conditions of integral type is considered. Sufficient conditions of the unique solvability are found for the above-mentioned problem.
@article{CMFD_2006_17_a0,
     author = {Yu. T. Sil'chenko},
     title = {A parabolic equation with nonlocal conditions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--10},
     publisher = {mathdoc},
     volume = {17},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_17_a0/}
}
TY  - JOUR
AU  - Yu. T. Sil'chenko
TI  - A parabolic equation with nonlocal conditions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 5
EP  - 10
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_17_a0/
LA  - ru
ID  - CMFD_2006_17_a0
ER  - 
%0 Journal Article
%A Yu. T. Sil'chenko
%T A parabolic equation with nonlocal conditions
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 5-10
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_17_a0/
%G ru
%F CMFD_2006_17_a0
Yu. T. Sil'chenko. A parabolic equation with nonlocal conditions. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 3, Tome 17 (2006), pp. 5-10. http://geodesic.mathdoc.fr/item/CMFD_2006_17_a0/

[1] Galakhov E. I., Skubachevskii A. L., “Ob odnoi nelokalnoi spektralnoi zadache”, Diff. ur-ya, 33:1 (1997), 25–32 | MR | Zbl

[2] Ionkin N. I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Diff. ur-ya, 13:2 (1977), 294–304 | MR | Zbl

[3] Lavrentev M. M., Romanov V. G., Shishatskii S. P., Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980 | MR

[4] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[5] Silchenko Yu. T., “Evolyutsionnye uravneniya s neplotno zadannym operatornym koeffitsientom”, Sib. mat. zh., 34:2 (1993), 166–169 | MR

[6] Silchenko Yu. T., “Obyknovennyi differentsialnyi operator s neregulyarnymi granichnymi usloviyami”, Sib. mat. zh., 40:1 (1999), 183–190 | MR

[7] Silchenko Yu. T., Sobolevskii P. E., “Razreshimost zadachi Koshi dlya evolyutsionnogo uravneniya v banakhovom prostranstve s neplotno zadannym operatornym koeffitsientom, porozhdayuschim polugruppu s osobennostyu”, Sib. mat. zh., 27:4 (1986), 93–104 | MR

[8] Tikhonov I. V., “O razreshimosti zadachi s nelokalnym usloviem dlya differentsialnogo uravneniya v banakhovom prostranstve”, Diff. ur-ya, 34:6 (1998), 841–843 | MR | Zbl

[9] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya, Elm, Baku, 1985