Harmonic maps into loop spaces of compact Lie groups
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 136-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study harmonic maps from Riemann surfaces $M$ to the loop spaces $\Omega G$ of compact Lie groups $G$, using the twistor approach. Harmonic maps into loop spaces are of a special interest because of their relation to the Yang–Mills equations on $\mathbb R^4$.
@article{CMFD_2006_16_a8,
     author = {A. G. Sergeev},
     title = {Harmonic maps into loop spaces of compact {Lie} groups},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {136--145},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a8/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Harmonic maps into loop spaces of compact Lie groups
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 136
EP  - 145
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a8/
LA  - ru
ID  - CMFD_2006_16_a8
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Harmonic maps into loop spaces of compact Lie groups
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 136-145
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a8/
%G ru
%F CMFD_2006_16_a8
A. G. Sergeev. Harmonic maps into loop spaces of compact Lie groups. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 136-145. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a8/

[1] Davidov I., Sergeev A. G., “Tvistornye prostranstva i garmonicheskie otobrazheniya”, Usp. mat. nauk, 48:3 (1993), 3–96 | MR | Zbl

[2] Sergeev A. G., Kelerova geometriya prostranstv petel, Moskovskii tsentr nepreryvnogo matematicheskogo obrazovaniya, Moskva, 2001

[3] Sergeev A. G., “Garmonicheskie otobrazheniya v odnorodnye rimanovy mnogoobraziya: tvistornyi podkhod”, Usp. mat. nauk, 59:6 (2004), 177–200 | MR | Zbl

[4] Atiayh M. F., “Instantons in two and four dimensions”, Commun. Math. Phys., 93 (1984), 437–451 | DOI | MR

[5] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl

[6] Burstall F. E., “A twistor description of harmonic maps of a 2-sphere into a Grassmanian”, Math. Ann., 274 (1986), 61–74 | DOI | MR | Zbl

[7] Burstall F. E., Salamon S., “Tournaments, flags and harmonic maps”, Math. Ann., 277 (1987), 249–265 | DOI | MR | Zbl

[8] Donaldson S. K., “Instantons and geometric invariant theory”, Commun. Math. Phys., 93 (1984), 453–460 | DOI | MR | Zbl

[9] Eells J., Salamon S., “Twistorial constructions of harmonic maps of surfaces into four-manifolds”, Ann. Scuola Norm. Super. Pisa, 12 (1985), 589–640 | MR | Zbl

[10] Pressley A., Segal G., Loop groups, Clarendon Press, Oxford, 1986 | MR | Zbl

[11] Wood J. C., “The explicit construction and parametrization of all harmonic maps from the two-sphere to a complex Grassmanian”, J. Reine Angew. Math., 386 (1988), 1–31 | DOI | MR | Zbl