On some optimal control problem in the Voigt model of the motion of a~viscoelastic fluid
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 38-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

The external feedback control problem in the Voigt model of the motion of a viscoelastic fluid is investigated. To this end, we prove the existence of weak solutions of the initial-boundary problem with the multi-valued right-hand side in the model considered and show the existence of a solution minimizing a given bounded lower semicontinuous functional.
@article{CMFD_2006_16_a3,
     author = {V. G. Zvyagin and M. Yu. Kuz'min},
     title = {On some optimal control problem in the {Voigt} model of the motion of a~viscoelastic fluid},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a3/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - M. Yu. Kuz'min
TI  - On some optimal control problem in the Voigt model of the motion of a~viscoelastic fluid
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 38
EP  - 46
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a3/
LA  - ru
ID  - CMFD_2006_16_a3
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A M. Yu. Kuz'min
%T On some optimal control problem in the Voigt model of the motion of a~viscoelastic fluid
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 38-46
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a3/
%G ru
%F CMFD_2006_16_a3
V. G. Zvyagin; M. Yu. Kuz'min. On some optimal control problem in the Voigt model of the motion of a~viscoelastic fluid. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 38-46. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a3/

[1] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, izd-vo VGU, Voronezh, 1986 | MR | Zbl

[2] Vinogradov G. V., Malkin A. Ya., Reologiya polimerov, Khimiya, M., 1977

[3] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[4] Goldshtein R. V., Gorodtsov V. A., Mekhanika sploshnykh sred, Chast 1, Nauka, M., 2000

[5] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[6] Oskolkov A. P., “O edinstvennosti i razreshimosti v tselom kraevykh zadach dlya uravnenii dvizheniya vodnykh rastvorov polimerov”, Zapiski nauchnykh seminarov LOMI, 38, 1973, 98–136 | MR | Zbl

[7] Oskolkov A. P., “K teorii nestatsionarnykh techenii zhidkostei Kelvina–Foigta”, Zapiski nauchnykh seminarov LOMI, 115, 1982, 191–202 | MR

[8] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987 | MR

[9] Fursikov A. V., “Optimal control of distributed systems. Theory and applications”, Trans. of Math. Monographs, 187, Amer. Math Soc., Providence, 2000 | MR

[10] Obukhovskii V. V., Zecca P., Zvyagin V. G., “Optimal feedback control in the problem of the motion of a viscoelastic fluid”, Topol. Methods Nonlinear Anal., 23 (2004), 323–337 | MR