Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{CMFD_2006_16_a0,
     author = {V. P. Burskii and A. S. Zhedanov},
     title = {Boundary value problems for string equation, {Poncelet} problem, and {Pell--Abel} equation: links and relations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--9},
     publisher = {mathdoc},
     volume = {16},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/}
}
TY  - JOUR
AU  - V. P. Burskii
AU  - A. S. Zhedanov
TI  - Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 5
EP  - 9
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/
LA  - ru
ID  - CMFD_2006_16_a0
ER  - 
%0 Journal Article
%A V. P. Burskii
%A A. S. Zhedanov
%T Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 5-9
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/
%G ru
%F CMFD_2006_16_a0
V. P. Burskii; A. S. Zhedanov. Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 5-9. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/

[1] Arnold V. I., “Malye znamenateli, I”, Izv. Akad. Nauk SSSR, ser. mat., 25:1 (1961), 21–86 | MR

[2] Burskii V. P., Metody issledovaniya granichnykh zadach dlya obschikh differentsialnykh uravnenii, Naukova Dumka, Kiev, 2002

[3] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnymi operatorami”, Funkts. analiz i prilozh., 22 (1988), 1–13 | MR

[4] Granovskii Ya. I., Zhedanov A. S., “Integriruemost klassicheskoi $XY$-tsepi”, Pisma v zh.-l. eksper. i teor. fiziki, 44 (1986), 237–239 | MR

[5] Malyshev V. A., “Uravnenie Abelya”, S.-Peterb. mat. zh-l., 13:6 (2002), 893–938 | MR | Zbl

[6] Ptashnik B. I., Nekorrektnye kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova Dumka, Kiev, 1984 | MR

[7] Sodin M. L., Yuditskii P. M., “Funktsii, naimenee uklonyayuschiesya ot nulya na zamknutykh podmnozhestvakh veschestvennoi osi”, S.-Peterb. mat. zh-l., 4:2 (1993), 201–249 | MR

[8] Berger M., Géométrie, CEDIC, Paris, 1978

[9] Bourgin D. G., Duffin R., “The Dirichlet problem for the vibrating string equation”, Bull. Am. Math. Soc., 45 (1939), 851–859 | DOI | MR

[10] Francoise J. P., Ragnisco O., “An iterative process on quartics and integrable symplectic maps”, Symmetries and Integrability of Difference Equations, Cambridge University Press, Cambridge, 1998, 56–63 | MR

[11] Griffiths P., Harris J., “On a Cayley's explicit solution to Poncelet's porism”, Enseign. Math., 24 (1978), 31–40 | MR | Zbl

[12] Hadamard J., “Equations aux derivees partielles”, Enseign. Math. (2), 36 (1936), 25–42 | MR

[13] Huber A., “Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl

[14] John F., “The Dirichlet problem for a hyperbolic equation”, Amer. J. Math., 63 (1941), 141–154 | DOI | MR | Zbl

[15] Whittaker E. T., Watson G. N., A course of modern analysis, University Press, Cambridge, 1927 | MR