Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_16_a0, author = {V. P. Burskii and A. S. Zhedanov}, title = {Boundary value problems for string equation, {Poncelet} problem, and {Pell--Abel} equation: links and relations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {5--9}, publisher = {mathdoc}, volume = {16}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/} }
TY - JOUR AU - V. P. Burskii AU - A. S. Zhedanov TI - Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 5 EP - 9 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/ LA - ru ID - CMFD_2006_16_a0 ER -
%0 Journal Article %A V. P. Burskii %A A. S. Zhedanov %T Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations %J Contemporary Mathematics. Fundamental Directions %D 2006 %P 5-9 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/ %G ru %F CMFD_2006_16_a0
V. P. Burskii; A. S. Zhedanov. Boundary value problems for string equation, Poncelet problem, and Pell--Abel equation: links and relations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 2, Tome 16 (2006), pp. 5-9. http://geodesic.mathdoc.fr/item/CMFD_2006_16_a0/
[1] Arnold V. I., “Malye znamenateli, I”, Izv. Akad. Nauk SSSR, ser. mat., 25:1 (1961), 21–86 | MR
[2] Burskii V. P., Metody issledovaniya granichnykh zadach dlya obschikh differentsialnykh uravnenii, Naukova Dumka, Kiev, 2002
[3] Veselov A. P., “Integriruemye sistemy s diskretnym vremenem i raznostnymi operatorami”, Funkts. analiz i prilozh., 22 (1988), 1–13 | MR
[4] Granovskii Ya. I., Zhedanov A. S., “Integriruemost klassicheskoi $XY$-tsepi”, Pisma v zh.-l. eksper. i teor. fiziki, 44 (1986), 237–239 | MR
[5] Malyshev V. A., “Uravnenie Abelya”, S.-Peterb. mat. zh-l., 13:6 (2002), 893–938 | MR | Zbl
[6] Ptashnik B. I., Nekorrektnye kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova Dumka, Kiev, 1984 | MR
[7] Sodin M. L., Yuditskii P. M., “Funktsii, naimenee uklonyayuschiesya ot nulya na zamknutykh podmnozhestvakh veschestvennoi osi”, S.-Peterb. mat. zh-l., 4:2 (1993), 201–249 | MR
[8] Berger M., Géométrie, CEDIC, Paris, 1978
[9] Bourgin D. G., Duffin R., “The Dirichlet problem for the vibrating string equation”, Bull. Am. Math. Soc., 45 (1939), 851–859 | DOI | MR
[10] Francoise J. P., Ragnisco O., “An iterative process on quartics and integrable symplectic maps”, Symmetries and Integrability of Difference Equations, Cambridge University Press, Cambridge, 1998, 56–63 | MR
[11] Griffiths P., Harris J., “On a Cayley's explicit solution to Poncelet's porism”, Enseign. Math., 24 (1978), 31–40 | MR | Zbl
[12] Hadamard J., “Equations aux derivees partielles”, Enseign. Math. (2), 36 (1936), 25–42 | MR
[13] Huber A., “Erste Randwertaufgabe fur geschlossene Bereiche bei der Gleichung $U_{xy}=f(x,y)$”, Monatsh. Math. Phys., 39 (1932), 79–100 | DOI | MR | Zbl
[14] John F., “The Dirichlet problem for a hyperbolic equation”, Amer. J. Math., 63 (1941), 141–154 | DOI | MR | Zbl
[15] Whittaker E. T., Watson G. N., A course of modern analysis, University Press, Cambridge, 1927 | MR