Effective method for solving singularly perturbed systems of nonlinear differential equations
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 45-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary-value problem for a class of singularly perturbed systems of nonlinear ordinary differential equations is considered. An analytic-numerical method for solving this problem is proposed. The method combines the operational Newton method with the method of continuation by a parameter and construction of the initial approximation in an explicit form. The method is applied to the particular system arising when simulating the interaction of physical fields in a semiconductor diode. The Frechét derivative and the Green function for the corresponding differential equation are found analytically in this case. Numerical simulations demonstrate a high efficiency and superexponential rate of convergence of the method proposed.
@article{CMFD_2006_15_a4,
     author = {S. I. Bezrodnykh and V. I. Vlasov},
     title = {Effective method for solving singularly perturbed systems of nonlinear differential equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {45--58},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a4/}
}
TY  - JOUR
AU  - S. I. Bezrodnykh
AU  - V. I. Vlasov
TI  - Effective method for solving singularly perturbed systems of nonlinear differential equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 45
EP  - 58
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a4/
LA  - ru
ID  - CMFD_2006_15_a4
ER  - 
%0 Journal Article
%A S. I. Bezrodnykh
%A V. I. Vlasov
%T Effective method for solving singularly perturbed systems of nonlinear differential equations
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 45-58
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_15_a4/
%G ru
%F CMFD_2006_15_a4
S. I. Bezrodnykh; V. I. Vlasov. Effective method for solving singularly perturbed systems of nonlinear differential equations. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 45-58. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a4/

[1] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl

[2] Bezrodnykh S. I., Vlasov V. I., “Kraevaya zadacha dlya modelirovaniya fizicheskikh polei v poluprovodnikovom diode”, Zhurn. vychisl. mat. i mat. fiz., 44:12 (2004), 2220–2251 | MR | Zbl

[3] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR

[4] Zi S., Fizika poluprovodnikovykh priborov, Mir, M., 1984

[5] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR

[7] Fedorenko R. P., Vvedenie v vychislitelnuyu fiziku, MFTI, M., 1994

[8] Kheding Dzh., Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965