Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2006_15_a2, author = {J. Baris and P. Baris and B. Ruchlewicz}, title = {Blow-up {Solutions} of {Quadratic} {Differential} {Systems}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {29--35}, publisher = {mathdoc}, volume = {15}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/} }
TY - JOUR AU - J. Baris AU - P. Baris AU - B. Ruchlewicz TI - Blow-up Solutions of Quadratic Differential Systems JO - Contemporary Mathematics. Fundamental Directions PY - 2006 SP - 29 EP - 35 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/ LA - ru ID - CMFD_2006_15_a2 ER -
J. Baris; P. Baris; B. Ruchlewicz. Blow-up Solutions of Quadratic Differential Systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 29-35. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/
[1] Baris Ya. S., “Integralnye mnogoobraziya i resheniya matrichnogo uravneniya Rikkati”, DAN USSR, Ser. A, 11, 7–10 | MR | Zbl
[2] Erugin N. P., Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Nauka i tekhnika, Minsk, 1972 | MR | Zbl
[3] Adamjan V. M., Langer H., Tretter Ch., “Existence and uniqueness of contractive solutions of some Riccati equations”, J. Funct. Anal., 179 (2001), 448–473 | DOI | MR | Zbl
[4] Baris J., Baris P., Wawiórko E., “Asymptotic behavior of solutions of Lotka–Volterra systems”, Nonlinear Anal. Real World Appl. (to appear) | MR
[5] Baris J., Buraczewski A., “Periodic solutions of the Riccati equation in Banach spaces”, Demonstratio Math., 36:2 (2003), 355–365 | MR
[6] Goriely A., Hyde C., “Necessary and sufficient conditions for finite time singularities in ordinary differential equations”, J. Differ. Equations, 161 (2000), 422–448 | DOI | MR | Zbl
[7] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1993 | MR
[8] Jacobson D. H., Extensions of linear-quadratic control; optimalization and matrix theory, Academic Press, London, 1977 | MR | Zbl
[9] Kim K. I., Lin Z., “Blow-up in three-species cooperating model”, Appl. Math. Lett., 17 (2004), 89–94 | DOI | MR | Zbl
[10] Li D., Huang H., “Blow-up phenomena of second-order nonlinear differential equations”, J. Math. Anal. Appl., 276 (2002), 184–195 | DOI | MR | Zbl
[11] Murray J. D., Mathematical Biology, Springer, Berlin, 1989 | MR