Blow-up Solutions of Quadratic Differential Systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this paper is to investigate the existence problem for blow-up solutions of quadratic differential systems, Riccati equations, and Lotka–Volterra systems. For this purpose, we introduce the concept of negative and positive blow-up times of solutions of the above-mentioned systems and provide upper or lower bounds for these times.
@article{CMFD_2006_15_a2,
     author = {J. Baris and P. Baris and B. Ruchlewicz},
     title = {Blow-up {Solutions} of {Quadratic} {Differential} {Systems}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {29--35},
     publisher = {mathdoc},
     volume = {15},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/}
}
TY  - JOUR
AU  - J. Baris
AU  - P. Baris
AU  - B. Ruchlewicz
TI  - Blow-up Solutions of Quadratic Differential Systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2006
SP  - 29
EP  - 35
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/
LA  - ru
ID  - CMFD_2006_15_a2
ER  - 
%0 Journal Article
%A J. Baris
%A P. Baris
%A B. Ruchlewicz
%T Blow-up Solutions of Quadratic Differential Systems
%J Contemporary Mathematics. Fundamental Directions
%D 2006
%P 29-35
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/
%G ru
%F CMFD_2006_15_a2
J. Baris; P. Baris; B. Ruchlewicz. Blow-up Solutions of Quadratic Differential Systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the Fourth International Conference on Differential and Functional-Differential Equations (Moscow, August 14–21, 2005). Part 1, Tome 15 (2006), pp. 29-35. http://geodesic.mathdoc.fr/item/CMFD_2006_15_a2/

[1] Baris Ya. S., “Integralnye mnogoobraziya i resheniya matrichnogo uravneniya Rikkati”, DAN USSR, Ser. A, 11, 7–10 | MR | Zbl

[2] Erugin N. P., Kniga dlya chteniya po obschemu kursu differentsialnykh uravnenii, Nauka i tekhnika, Minsk, 1972 | MR | Zbl

[3] Adamjan V. M., Langer H., Tretter Ch., “Existence and uniqueness of contractive solutions of some Riccati equations”, J. Funct. Anal., 179 (2001), 448–473 | DOI | MR | Zbl

[4] Baris J., Baris P., Wawiórko E., “Asymptotic behavior of solutions of Lotka–Volterra systems”, Nonlinear Anal. Real World Appl. (to appear) | MR

[5] Baris J., Buraczewski A., “Periodic solutions of the Riccati equation in Banach spaces”, Demonstratio Math., 36:2 (2003), 355–365 | MR

[6] Goriely A., Hyde C., “Necessary and sufficient conditions for finite time singularities in ordinary differential equations”, J. Differ. Equations, 161 (2000), 422–448 | DOI | MR | Zbl

[7] Guckenheimer J., Holmes P., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1993 | MR

[8] Jacobson D. H., Extensions of linear-quadratic control; optimalization and matrix theory, Academic Press, London, 1977 | MR | Zbl

[9] Kim K. I., Lin Z., “Blow-up in three-species cooperating model”, Appl. Math. Lett., 17 (2004), 89–94 | DOI | MR | Zbl

[10] Li D., Huang H., “Blow-up phenomena of second-order nonlinear differential equations”, J. Math. Anal. Appl., 276 (2002), 184–195 | DOI | MR | Zbl

[11] Murray J. D., Mathematical Biology, Springer, Berlin, 1989 | MR