Well-posedness of mathematical models of continuum mechanics and thermodynamics
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 5-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical models of nonequilibrium thermodynamics related to the concepts of stability and well-posedness are considered.
@article{CMFD_2003_3_a0,
     author = {E. V. Radkevich},
     title = {Well-posedness of mathematical models of continuum mechanics and thermodynamics},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {5--32},
     publisher = {mathdoc},
     volume = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_3_a0/}
}
TY  - JOUR
AU  - E. V. Radkevich
TI  - Well-posedness of mathematical models of continuum mechanics and thermodynamics
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 5
EP  - 32
VL  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_3_a0/
LA  - ru
ID  - CMFD_2003_3_a0
ER  - 
%0 Journal Article
%A E. V. Radkevich
%T Well-posedness of mathematical models of continuum mechanics and thermodynamics
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 5-32
%V 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_3_a0/
%G ru
%F CMFD_2003_3_a0
E. V. Radkevich. Well-posedness of mathematical models of continuum mechanics and thermodynamics. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 3, Tome 3 (2003), pp. 5-32. http://geodesic.mathdoc.fr/item/CMFD_2003_3_a0/

[1] Volevich L. R., Gindikin S. G., Smeshannaya zadacha dlya differentsialnykh uravnenii v chastnykh proizvodnykh s kvaziodnorodnoi starshei chastyu, Editorial URSS, M., 1999

[2] Volevich L. R., Dzhavadov M. G., “Ravnomernye otsenki reshenii giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Diff. ur-ya, 19 (1983), 2082–2090 | MR | Zbl

[3] Volevich L. R., Radkevich E. V., “Ravnomernye otsenki reshenii zadachi Koshi dlya giperbolicheskikh uravnenii s malym parametrom pri starshikh proizvodnykh”, Diff. ur-ya, 39:3 (2003), 1–14 | MR

[4] Godunov S. G., Elementy mekhaniki sploshnoi sredy, Nauka, M., 1978 | MR

[5] Lorents G. A., Lektsii po termodinamike, NITs, M., 2001 | Zbl

[6] Chapman S. C., Cowling T. C., The mathematical theory of non-uniform gases, Cambridge University Press, 1961 | MR

[7] Chen G. Q., “Quasidecoupling method for discontinuous solutions to conservation law”, Commun. Pure Appl. Math., 46 (1993), 755–781 | DOI | Zbl

[8] Chen G. Q., Levermore C. D., Lui T. P., “Hyperbolic conservation laws with stiff relaxation terms and entropy”, Commun. Pure Appl. Math., 47 (1994), 787–830 | DOI | MR | Zbl

[9] Chen G. Q., Lu Y. G., “A study on application of the theory of compansated compactness”, Chin. Sci. Bull., 34 (1989), 15–19 | MR | Zbl

[10] Grad H., “On the kinetic theory of rarefied gases”, Commun. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl

[11] Hormander L., Lectures on nonlinear hyperbolic differential equations, Springer-Verlag, Paris, 1997 | MR

[12] Junk M., “Domain of definition of Levermore's five-moment system”, J. Stat. Phys., 93 (1998), 1143–1167 | DOI | MR | Zbl

[13] Levermore C. D., “Moment closure hierarchies for kinetic theories”, J. Stat. Phys., 83 (1996), 1021–1065 | DOI | MR | Zbl

[14] Murat F., “L'injection du cone positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q2$”, Math. Pure Appl., 60 (1981), 309–322 | MR | Zbl

[15] Struchtrup H., Weiss W., “Temperature jump and velocity slip in the moment method”, Contin. Mech. Thermodyn., 12 (2000), 1–18 | DOI | MR | Zbl