Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2003_2_a7, author = {J. N. Mather}, title = {Arnold {Diffusion.} {I:} {Announcement} of {Results}}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {116--130}, publisher = {mathdoc}, volume = {2}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/} }
J. N. Mather. Arnold Diffusion. I: Announcement of Results. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 116-130. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/
[A1] Arnold V. I., “Instability of dynamical systems with many degrees of Freedom”, Soviet Math. Dokl., 5 (1964), 581–585 | MR
[A2] Arnold V. I., “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surv., 18:6 (1963), 85–191 | DOI | MR
[A3] Arnold V. I., Dynamical systems III. Encyclopaedia of mathematical sciences, Springer–Verlag, Berlin–Heidelberg, 1988 | MR
[C] Carneiro M. J. D., “On minimizing measures of the action of autonomous Lagrangians”, Nonlinearity, 8 (1995), 1077–1085 | DOI | MR | Zbl
[DLS] Delshams A., de la Llave R., Seara T. M., Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heurestics and rigorous verification of a model, Preprint, 2002 | Zbl
[H] Hedlund G. A., “Geodesics on a two–dimensional Riemannian manifold with periodic coefficients”, Ann. Math., 33 (1932), 719–739 | DOI | MR | Zbl
[Mat1] Mather J. N., “Action minimizing invariant measures for positive definite Lagrangian systems”, Math. Z., 207 (1991), 169–207 | DOI | MR | Zbl
[Mat2] Mather J. N., “Variational construction of connecting orbits”, Ann. Inst. Fourier, 43 (1993), 1349–1386 | MR | Zbl
[Mat3] Mather J. N., Total disconnectedness of the quotient Aubry set in low dimensions, Preprint, 2002 ; Moser memorial volume of Commun. Pure Appl. Math. (to appear) | MR | Zbl
[Mat4] Mather J. N., A property of compact, connected laminated subsets of manifolds, Preprint, 2002 ; Moser memorial volume of Ergodic Theory and Dynamical Systems (to appear) | MR | Zbl
[Mo] Morse M., “A fundamental class of geodesics on any closed surface of genus greater than one”, Trans. Am. Math. Soc., 26 (1924), 25–60 | DOI | MR | Zbl
[X] Xia J., Arnold diffusion: a variational construction, Proc. International Congress Mathematicians, vol. II, Berlin, 1998