Arnold Diffusion. I: Announcement of Results
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 116-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We announce a proof of the existence of Arnold diffusion for a large class of small perturbations of integrable Hamiltonian systems with positive normal torsion in the case of time-periodic systems in two degrees of freedom and in the case of autonomous systems in three degrees of freedom.
@article{CMFD_2003_2_a7,
     author = {J. N. Mather},
     title = {Arnold {Diffusion.} {I:} {Announcement} of {Results}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {116--130},
     publisher = {mathdoc},
     volume = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/}
}
TY  - JOUR
AU  - J. N. Mather
TI  - Arnold Diffusion. I: Announcement of Results
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 116
EP  - 130
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/
LA  - ru
ID  - CMFD_2003_2_a7
ER  - 
%0 Journal Article
%A J. N. Mather
%T Arnold Diffusion. I: Announcement of Results
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 116-130
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/
%G ru
%F CMFD_2003_2_a7
J. N. Mather. Arnold Diffusion. I: Announcement of Results. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 116-130. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/

[A1] Arnold V. I., “Instability of dynamical systems with many degrees of Freedom”, Soviet Math. Dokl., 5 (1964), 581–585 | MR

[A2] Arnold V. I., “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surv., 18:6 (1963), 85–191 | DOI | MR

[A3] Arnold V. I., Dynamical systems III. Encyclopaedia of mathematical sciences, Springer–Verlag, Berlin–Heidelberg, 1988 | MR

[C] Carneiro M. J. D., “On minimizing measures of the action of autonomous Lagrangians”, Nonlinearity, 8 (1995), 1077–1085 | DOI | MR | Zbl

[DLS] Delshams A., de la Llave R., Seara T. M., Geometric mechanism for diffusion in Hamiltonian systems overcoming the large gap problem: heurestics and rigorous verification of a model, Preprint, 2002 | Zbl

[H] Hedlund G. A., “Geodesics on a two–dimensional Riemannian manifold with periodic coefficients”, Ann. Math., 33 (1932), 719–739 | DOI | MR | Zbl

[Mat1] Mather J. N., “Action minimizing invariant measures for positive definite Lagrangian systems”, Math. Z., 207 (1991), 169–207 | DOI | MR | Zbl

[Mat2] Mather J. N., “Variational construction of connecting orbits”, Ann. Inst. Fourier, 43 (1993), 1349–1386 | MR | Zbl

[Mat3] Mather J. N., Total disconnectedness of the quotient Aubry set in low dimensions, Preprint, 2002 ; Moser memorial volume of Commun. Pure Appl. Math. (to appear) | MR | Zbl

[Mat4] Mather J. N., A property of compact, connected laminated subsets of manifolds, Preprint, 2002 ; Moser memorial volume of Ergodic Theory and Dynamical Systems (to appear) | MR | Zbl

[Mo] Morse M., “A fundamental class of geodesics on any closed surface of genus greater than one”, Trans. Am. Math. Soc., 26 (1924), 25–60 | DOI | MR | Zbl

[X] Xia J., Arnold diffusion: a variational construction, Proc. International Congress Mathematicians, vol. II, Berlin, 1998