Arnold Diffusion. I: Announcement of Results
Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 116-130

Voir la notice de l'article provenant de la source Math-Net.Ru

We announce a proof of the existence of Arnold diffusion for a large class of small perturbations of integrable Hamiltonian systems with positive normal torsion in the case of time-periodic systems in two degrees of freedom and in the case of autonomous systems in three degrees of freedom.
@article{CMFD_2003_2_a7,
     author = {J. N. Mather},
     title = {Arnold {Diffusion.} {I:} {Announcement} of {Results}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {116--130},
     publisher = {mathdoc},
     volume = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/}
}
TY  - JOUR
AU  - J. N. Mather
TI  - Arnold Diffusion. I: Announcement of Results
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2003
SP  - 116
EP  - 130
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/
LA  - ru
ID  - CMFD_2003_2_a7
ER  - 
%0 Journal Article
%A J. N. Mather
%T Arnold Diffusion. I: Announcement of Results
%J Contemporary Mathematics. Fundamental Directions
%D 2003
%P 116-130
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/
%G ru
%F CMFD_2003_2_a7
J. N. Mather. Arnold Diffusion. I: Announcement of Results. Contemporary Mathematics. Fundamental Directions, Proceedings of the International Conference on Differential and Functional-Differential Equations — Satellite of International Congress of Mathematicians ICM-2002 (Moscow, MAI, 11–17 August, 2002). Part 2, Tome 2 (2003), pp. 116-130. http://geodesic.mathdoc.fr/item/CMFD_2003_2_a7/